首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
李强  吴晓青  张新建 《微生物学报》2023,63(11):4118-4132
我国秸秆资源丰富,每年产生逾8亿t作物秸秆。通过秸秆直接还田或肥料化还田不仅可以减少化肥的施用量,缓解农业污染压力,还能实现农作物秸秆的循环利用。木质素结构复杂,且与纤维素和半纤维素相互缠绕,因此秸秆的自然腐解过程中,木质素是主要的限速因子,为了提高降解效率,木质素降解菌的发掘和降解机制也逐渐成为研究热点。本文综述了降解木质素的真菌和细菌的研究现状,对比其真菌和细菌降解特性的优缺点并分析复合降解菌群的优势。随后对木质素降解酶系的酶学性质、在不同微生物中的表达特性进行总结,对木质素降解机制及衍生芳烃代谢路径的研究进展进行综述。最后整理木质素降解微生物在秸秆肥料化技术中的应用进展,并探讨了微生物降解秸秆木质素的应用前景和未来的研究方向。  相似文献   

2.
木质素的微生物降解机制   总被引:6,自引:0,他引:6  
研究微生物降解木质素的反应机理,可以从根本上解释微生物或酶对木质素的作用过程,对提高木质素降解效率,治理环境污染等具有非常重要的意义。从木质素结构的差异出发,总结了近年来研究木质素微生物降解机制所采用的主要模型化合物、研究方法,概述了微生物对木质素的三大作用机理:侧链氧化、去甲基化和芳香环断裂,以及参与这三个反应的主要微生物。  相似文献   

3.
赵一全  张慧  张晓昱  谢尚县 《微生物学报》2020,60(12):2717-2733
木质纤维素是地球上最丰富的可再生资源。我国每年产生约9亿吨农业秸秆,因得不到有效利用,不仅造成资源浪费,也产生了诸多严峻的环境问题。缺少木质素的高效降解和资源化利用技术是限制木质纤维素产业化的主要瓶颈之一。虽然木质素的降解与转化多年来一直都受到关注,但是由于木质素结构的复杂性及异质性,使其高效利用受限。近年来,微生物具有的“生物漏斗”式转化特性为木质素的高值转化和利用提供了新方向。本文就生物质利用研究以来,微生物在木质素解聚与转化方面的研究历程与最新进展进行了简要的回顾与总结,并初步讨论了目前木质素高值转化面临的机遇与挑战。  相似文献   

4.
刘瑞  张丽  孙鹏  徐刚  曹颖  胡尚连  赵博 《微生物学通报》2023,50(7):3232-3244
生物质是代替石化资源生产能源和化学品的关键资源,木质素作为植物细胞壁的主要成分已经在很多行业中得到了广泛的应用。然而,由于木质素结构复杂且难以降解,成为生物质资源利用的最大障碍,因此,去除或者降解木质素是利用细胞壁中其他成分的关键步骤。许多行业使用有害化学物质降解木质素,严重危害了生态环境,自然界中木质素经常被包括真菌和细菌在内的微生物降解,因此,研究微生物降解木质素的机制为解决这一问题提供了可能性。本文讨论了木质素的化学组成成分,重点讨论了自然界降解木质素的微生物种类及其降解机制,包括各种真菌和细菌的木质素降解活性,描述了由各种微生物特别是白腐真菌、褐腐真菌和细菌产生的木质素降解酶,并展望了今后木质素生物降解的研究和应用的可能方向。  相似文献   

5.
烟草废弃物的资源化利用及无害处理过程,需要利用微生物高效降解其中的难降解物质,如木质素与尼古丁。本文主要综述烟草废弃物中难降解物质的生物降解研究进展。迄今,已经发现了不少木质素和尼古丁的微生物降解菌株,对其降解机理及应用已有不少研究报道,但其在烟草废弃物处理中的应用方面报道较少。木质素和尼古丁降解菌可以用于废次烟叶(烟梗)木质素的消减和尼古丁去除,但同时也需要考察菌株的降解能力和应用环境的适用性。具备降解木质素和尼古丁双重功能的菌株更有应用前景,但迄今发现较少。基于全基因组分析和微生物组学技术的复合菌群的研究也是重要的研究方向,将推动含木质素和尼古丁等多种难降解物质的废次烟叶的处置技术发展和实际应用。  相似文献   

6.
木质素在海洋中的生物转化及其对海洋碳循环的影响   总被引:1,自引:0,他引:1  
彭倩楠  林璐 《微生物学报》2020,60(9):1959-1971
微型生物参与的海洋碳汇是海洋重要的储碳途径,可调节全球气候变化。木质素是地球上第二大光合而成的碳库,其在海洋中的生物地球化学过程与海洋碳循环密切相关。异养微生物所主导的代谢活动是木质素生物转化的主要途径。近年来,迅速发展的高通量测序技术与传统微生物技术相结合,在探索自然生境中木质素代谢菌群,发现木质素代谢新物种,挖掘相关功能基因等方面已取得一系列成果。然而绝大多数的研究主要集中于陆地生态系统,对于海洋生态系统的研究仍较少。陆源有机碳在海洋中的转化过程仍是一个"谜",故解析海洋木质素碳转化是海洋碳循环研究的重要任务。本文综述了参与海洋木质素转化的功能微生物、木质素代谢机理以及微生物碳代谢活动与海洋碳汇过程的内在联系,为今后的研究提供参考。  相似文献   

7.
细菌降解木质素的研究进展   总被引:5,自引:0,他引:5  
木质素是自然界最丰富的芳香化合物,其分解与陆地上碳循环密切相关。提取木质纤维素中的葡萄糖使其转化成乙醇,是生产第二代生物能源的关键步骤。但是由于木质素是一种非常稳定的化合物,难以降解是实现生物乙醇转化的主要屏障,因此关于木质素的生物降解研究具有非常重要的意义。真菌降解木质素的研究已经深入的进行了多年,并取得丰富的成果,但是关于细菌降解木质素的研究还处在初级阶段。由于广泛的生长条件和良好的环境适应能力,细菌在木质素降解方面深受研究人员的关注。本文通过总结前人的研究成果,讨论了木质素的降解机制、代谢途径及细菌降解木质素的工业应用前景,同时还展望了分子生物学及生物信息学在木质素降解方面的应用前景。  相似文献   

8.
木质素是木质的主要成分之一,在自然界中,高分子木质素被真菌的胞外酶分解成低分子芳香族化合物,然后土壤细菌将其完全降解为二氧化碳。由此可见,木质素的完全降解过程是真菌和细菌的共同作用。研究细菌的降解机制,一方面可以理解芳香族化合物在生态系中的碳素循环,另一方面可以为木质素的有效利用提供基因和酶工具,将可再生资源的木质素转化成高附加价值的工业产品。Sphingobium sp.SYK-6是1987年从造纸厂废水中以木质素中的联苯化合物(5,5’-脱氢联香草酸)作为唯一碳源分离出的木质素化合物降解菌。在长达25年以上的研究中我们阐明了一系列芳香族化合物的代谢途径,克隆了相关基因,2012年随着基因组测序的完成,整个降解功能的全貌展现出来。介绍内容:(1)基因组信息;(2)芳醚化合物代谢;(3)联苯化合物代谢;(4)阿魏酸代谢;(5)木质素化合物降解过程中四氢叶酸依赖型机制;(6)原儿茶酸4,5开环途径;(7)3-甲氧基没食子酸代谢的多样性;(8)应用研究。我们希望SYK-6菌株成为一个让人们理解木质素化合物降解的模式菌株。最后结合课题组现在的研究课题展望了木质素化合物的降解研究的发展方向。  相似文献   

9.
真菌降解木质素研究进展及在好氧堆肥中的研究展望   总被引:4,自引:0,他引:4  
综述了近十年来真菌降解木质素的研究进展,包括木质素的存在与结构,真菌降解木质素生物学、酶系及作用机理、生理学以及在环境工程中应用方面的研究进展,并对好氧堆肥处理城市垃圾中木质素生物降解的研究作了展望 。  相似文献   

10.
木质素酶及其生产菌的筛选育种   总被引:3,自引:0,他引:3  
木质素酶降解木质纤维素材料中的木质素,使木质素-半纤维素-纤维素结构解体,纤维素得以暴露出来供后续步骤处理.它广泛应用于生物制浆、生物漂白、废水处理等工业过程中.由于近年利用可再生木质纤维素材料用酶法水解生产酒精成了研究热点,因而作为纤维素材料生物转化工艺预处理过程中的关键角色,木质素酶也极大地唤起人们的研究兴趣.本文介绍了木质素与白腐真菌(Phanerochaete chrysosporium)木质素降解酶系的特征以及锰过氧化物酶、木质素过氧化物酶、漆酶等3种木质素酶的催化作用机理,归纳了目前流行的木质素酶产生菌的筛选方法及近年来从自然界筛选木质素酶高产菌的种类,并对产木质素酶野生菌株的诱变育种与基因工程改造的进展进行了阐述.  相似文献   

11.
As one of the most abundant polymers in biosphere, lignin has attracted extensive attention as a kind of promising feedstock for biofuel and bio-based products. However, the utilization of lignin presents various challenges in that its complex composition and structure and high resistance to degradation. Lignin conversion through biological platform harnesses the catalytic power of microorganisms to decompose complex lignin molecules and obtain value-added products through biosynthesis. Given the heterogeneity of lignin, various microbial metabolic pathways are involved in lignin bioconversion processes, which has been characterized in extensive research work. With different types of lignin substrates (e.g., model compounds, technical lignin, and lignocellulosic biomass), several bacterial and fungal species have been proved to own lignin-degrading abilities and accumulate microbial products (e.g., lipid and polyhydroxyalkanoates), while the lignin conversion efficiencies are still relatively low. Genetic and metabolic strategies have been developed to enhance lignin biodegradation by reprogramming microbial metabolism, and diverse products, such as vanillin and dicarboxylic acids were also produced from lignin. This article aims at presenting a comprehensive review on lignin bioconversion including lignin degradation mechanisms, metabolic pathways, and applications for the production of value-added bioproducts. Advanced techniques on genetic and metabolic engineering are also covered in the recent development of biological platforms for lignin utilization. To conclude this article, the existing challenges for efficient lignin bioprocessing are analyzed and possible directions for future work are proposed.  相似文献   

12.
《Trends in biotechnology》2022,40(12):1469-1487
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.  相似文献   

13.
The transformations of lignin that occur during its biodegradation are complex and incompletely understood. Certain fungi of the white-rot group, and possibly other fungi and bacteria, completely decompose lignin to carbon dioxide and water. Other fungi and bacteria apparently degrade lignin incompletely. Differences in lignin-degrading abilities observed for different organisms may result from differences in the completeness of their ligninolytic enzyme systems. Not all lignin components may be attacked by a particular organism. Alternatively, different organisms may differ in their basic mechanisms of attack on lignin. The basic pathways of lignin degradation have been elucidated only for certain representatives of the white-and brown-rot fungi. Although it is known that each of the principal structural components of lignin is attacked by other fungi and bacteria, the biochemistry of that attack has not been elucidated. Work with low molecular weight lignin models has provided only limited information on possible pathways of lignin degradation by microorganisms. There is little evidence to suggest a correlation between abilities to degrade single-ring aromatic or lignin model compounds and the ability to degrade polymeric lignin. More evidence has come from analysis of spent culture media for lignin breakdown products and from comparative chemical analyses of sound lignins versus decayed lignin residues. Accumulated evidence with the most thoroughly studied white-rot fungi suggests that with these fungi lignin degradation proceeds by way of extracellular mixed-function oxygenases and dioxygenases, which catalyse demethylations, hydroxylations and ring-fission reactions within a largely intact polymer, concomitant with some release of low molecular weight lignin fragments. There are also apparent relationships between lignin, carbohydrate and nitrogen metabolism for some organisms, but the relationships may vary from one organism to another. Although research is now mostly at a basic level, industrial applications may result from lignin degradation research. Considerable potential exists for the development of bioconversions which might produce low molecular weight chemicals from waste lignins, and thereby reduce our dependence on petroleum as a source of these chemicals. Alternatively, such bioconversions might produce chemically altered forms of polymeric lignin that may be valuable industrially.  相似文献   

14.
15.
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.  相似文献   

16.
17.
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin–carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.  相似文献   

18.
《Fungal Biology Reviews》2019,33(3-4):190-224
Lignin is a highly methylated, recalcitrant biopolymer available aplenty in nature, and is highly heteropolymer in nature, but yet it has been an under-utilized biopolymer. Modifying it chemically, biologically or enzymatically could render it a good candidate for phenol formaldehyde resin or into fine chemicals, fuels, and plastics applications. Lignin demethylation is facilitated by the enzymes called the O-demethylases, which are able to strip-off of the –OCH3 group in lignin, that give rise to the more widely accessible phenolic hydroxyls groups. Biological demethylation of lignins can be accomplished by means of the microorganisms, such as the white-rot, soft-rot and brown-rot fungi, besides some species of bacteria. Although the enzymes responsible for the lignin demethylation process have not been identified and purified adequately, it is perhaps possible that the O-demethylases, which have the ability to remove the O-methyl groups at the C-3 and (or) C-4 positions of the benzyl ring of low molecular weight lignin-like model compounds (LMCs) and lignin makes them the suitable candidate. These LMCs resemble the aromatic moieties inherent in the molecular structure of lignins, such as the vanillate, syringate, and veratrate. Thus, these enzymes are known as vanillate-O-demethylases, syringate O-demethylases, veratrate O-demethylases and Tetrahydrofolate (THF)-dependent O-demethylase (LigM), respectively. Whereas, some ligninolytic enzymes are known to cause damage to the structure of lignins (e.g., laccases, manganese-dependent peroxidase and lignin peroxidases). The O-demethylase enzymes are believed to be capable of removing the O-methyl groups from the lignins without affecting the complex backbone structure of the lignins. The mechanism of action of O-demethylases on lignin degradation is still largely unexplored, and their ability to remove the O-methyl groups from lignins has not been elucidated sufficiently. In this review, the recent advances made on the molecular approaches in the lignin demethylation (O-demethylases and ligninolytic enzymes), degradation and the probable strategies to tone up the lignin quality have been discussed in detail. The demethylation process of lignins by means of enzymes is envisaged to open up new vistas for its application as a biopolymer in various bioprocess and biorefinery process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号