首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The influence of temperature on the likelihood of Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) transmitting African horse sickness virus (AHSV) serotypes 4 and 6, bluetongue virus (BTV) serotypes 10 and 16 and epizootic haemorrhagic disease of deer virus (EHDV) serotype 1 was investigated. Extrinsic incubation periods (EIP), vector competence and vector survival were determined at 15, 20, 25 and 30 degrees C. The effect of humidity on vector survival was also investigated by maintaining adult C. sonorensis at 40, 75 and 85% r.h. at each temperature. Higher temperatures were associated with a shorter EIP for all virus serotypes except AHSV6, to which C. sonorensis was orally refractory, increased vector competence for AHSV4 and EHDV1, but not for BTV10 or BTV16, and a reduction in vector survival. Humidity interacted with temperature in influencing vector survival, such that at low temperatures, lower humidity (40 and 75% r.h.) was detrimental for survival (up to 18% reduction in longevity), whereas at high temperatures, high humidity (85% r.h.) was detrimental (up to 36% reduction in longevity). In general, the transmission potential of C. sonorensis for AHSV4, EHDV1, BTV10 and BTV16 was greater at higher temperatures, because although vector survival was reduced, this was more than compensated for by the accompanying decrease in duration of the EIP.  相似文献   

4.
Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional ‘types’ have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.  相似文献   

5.
Field-collected South African Culicoides (Diptera, Ceratopogonidae) were fed on sheep blood containing 16 live-attenuated vaccine strains of bluetongue virus (BTV) comprising serotypes -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -16 and -19. After 10 days extrinsic incubation at 23.5 degrees C, 11 and seven of the 16 BTV serotypes used were recovered from Culicoides (Avaritia) imicola Kieffer and Culicoides (A.) bolitinos Meiswinkel, respectively. One serotype was also recovered from Culicoides (Remmia) enderleini Cornet & Brunhes. Bluetongue virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. Significant differences were found in virus recovery rates from Culicoides species fed on blood containing similar or identical virus titres of different BTV serotypes. In addition, we demonstrated that a single passage of live-attenuated BTV-1, -2, -4, -9 and -16 through the insect vector, followed by passaging in insect cells, did not alter its infectivity for C. imicola and that the oral susceptibility of C. imicola to the attenuated vaccine strains of BTV-1, -4, -9 and -16 remained similar for at least three consecutive seasons.  相似文献   

6.
H Le Blois  B Fayard  T Urakawa    P Roy 《Journal of virology》1991,65(9):4821-4831
A functional assay has been developed to determine the conservative nature of the interacting sites of various structural proteins of orbiviruses by using baculovirus expression vectors. For this investigation, proteins of two serologically related orbiviruses, bluetongue virus (BTV) and the less studied epizootic hemorrhagic disease virus (EHDV), were used to synthesize chimeric particles. The results demonstrate that the inner capsid protein VP3 of EHDV-1 can replace VP3 protein of BTV in formation of the single-shelled corelike particles and the double-shelled viruslike particles. Moreover, we have demonstrated that all three minor core proteins (VP1, VP4, and VP6) can be incorporated into the homologous and chimeric corelike and viruslike particles, indicating that the functional epitopes of the VP3 protein are conserved for the morphological events of the virus. This is the first evidence of assembly of seven structural proteins of the virus by a baculovirus expression system. Confirmation at the molecular level was obtained by determining the EHDV-1 L3 gene nucleic sequence and by comparing it with sequences available for BTV. The analysis revealed a high degree homology between the two proteins: 20% difference, 50% of which is conservative. The consequences for Orbivirus phylogeny and the possibility of gene reassortments are discussed.  相似文献   

7.
Hassan SS  Roy P 《Journal of virology》1999,73(12):9832-9842
Segment 2 of bluetongue virus (BTV) serotype 10, which encodes the outer capsid protein VP2, was tagged with the S-peptide fragment of RNase A and expressed by a recombinant baculovirus. The recombinant protein was subsequently purified to homogeneity by virtue of the S tag, and the oligomeric nature of the purified protein was determined. The data obtained indicated that the majority of the protein forms a dimer and, to a lesser extent, some trimer. The recombinant protein was used to determine various biological functions of VP2. The purified VP2 was shown to have virus hemagglutinin activity and was antigenically indistinguishable from the VP2 of the virion. Whether VP2 is responsible for BTV entry into permissive cells was subsequently assessed by cell surface attachment and internalization studies with an immunofluorescence assay system. The results demonstrated that VP2 alone is responsible for virus entry into mammalian cells. By competition assay, it appeared that both VP2 and the BTV virion attached to the same cell surface molecule(s). The purified VP2 also had a strong affinity for binding to glycophorin A, a sialoglycoprotein component of erythrocytes, indicating that VP2 may be responsible for BTV transmission by the Culicoides vector to vertebrate hosts during blood feeding. Further, by various enzymatic treatments of BTV-permissive L929 cells, preliminary data have been obtained which indicated that the BTV receptor molecule(s) is likely to be a glycoprotein and that either the protein moiety of the glycoprotein or a second protein molecule could also serve as a coreceptor for BTV infection.  相似文献   

8.
Bluetongue virus (BTV) is an arthropod-borne virus transmitted by Culicoides species to vertebrate hosts. The double-capsid virion is infectious for Culicoides vector and mammalian cells, while the inner core is infectious for only Culicoides-derived cells. The recently determined crystal structure of the BTV core has revealed an accessible RGD motif between amino acids 168 to 170 of the outer core protein VP7, whose structure and position would be consistent with a role in cell entry. To delineate the biological role of the RGD sequence within VP7, we have introduced point mutations in the RGD tripeptide and generated three recombinant baculoviruses, each expressing a mutant derivative of VP7 (VP7-AGD, VP7-ADL, and VP7-AGQ). Each expressed mutant protein was purified, and the oligomeric nature and secondary structure of each was compared with those of the wild-type (wt) VP7 molecule. Each mutant VP7 protein was used to generate empty core-like particles (CLPs) and were shown to be biochemically and morphologically identical to those of wt CLPs. However, when mutant CLPs were used in an in vitro cell binding assay, each showed reduced binding to Culicoides cells compared to wt CLPs. Twelve monoclonal antibodies (MAbs) was generated using purified VP7 or CLPs as a source of antigen and were utilized for epitope mapping with available chimeric VP7 molecules and the RGD mutants. Several MAbs bound to the RGD motif on the core, as shown by immunogold labeling and cryoelectron microscopy. RGD-specific MAb H1.5, but not those directed to other regions of the core, inhibited the binding activity of CLPs to the Culicoides cell surface. Together, these data indicate that the RGD motif present on BTV VP7 is responsible for Culicoides cell binding activity.  相似文献   

9.
为监测云南边境地区虫媒库蠓蓝舌病病毒携带情况,本研究对2013年-2017年从云南6个口岸及周边地区采集到的约5 400只库蠓样本,分180组。采用荧光定量RT-PCR检测、鸡胚和细胞分离、目的基因克隆测序分析和间接免疫荧光试验等进行病毒分离与鉴定。结果显示:采集库蠓样本中有20组检出蓝舌病病毒核酸,检出率为11.11%(20/180);接种后有1份样本能导致鸡胚胚体充血出血和死亡以及BHK-21细胞呈现明显的细胞病变;RT-PCR能从感染细胞样本中扩增出蓝舌病病毒VP7基因特异性片段,且该片段序列与国外BTV-1毒株相应序列的相似性达95%~99%;间接免疫荧光试验显示分离病毒能与BTV-1抗体发生特异性结合。结果表明,云南边境地区库蠓携带有蓝舌病病毒,且为BTV-1,因此应加强对云南边境地区蓝舌病的预防与控制。  相似文献   

10.
T J French  P Roy 《Journal of virology》1990,64(4):1530-1536
The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.  相似文献   

11.
Abstract.  Two experiments were undertaken to estimate the transmission rates of bluetongue virus (BTV) serotype 1 between a biting midge vector, Culicoides sonorensis (Wirth & Jones) (Ceratopogonidae), and a natural host, sheep. In an experiment to measure the transmission rate from vector to host (V→H), six batches of one, five and 20 intrathoracically infected midges were fed on a total of 18 bluetongue (BT)-naïve sheep. The sheep were then monitored for 21 days for clinical signs of BT, viraemia and antibody response. All sheep fed on by five or 20 midges and five of six sheep fed on by just one midge showed signs of BT, were viraemic and developed antibody. The sixth sheep fed on by a single infected midge did not show signs of BT or have detectable viraemia; it did, however, develop a weak antibody response. A bite from a single infected midge is therefore able to transmit BTV to naïve sheep with 80–100% efficiency. Sheep fed upon by larger numbers of infected midges took less time to reach maximum viraemia and developed stronger antibody responses. Sheep exposed to greater amounts of BTV in feeding midges developed a higher level of viraemia and stronger antibody responses. In a second experiment to measure the transmission rate from host to vector (H→V), batches of up to 500 uninfected female C. sonorensis fed every 1–2 days on two experimentally infected sheep during the course of infection. Of 3929 engorged midges that were individually titrated after surviving the extrinsic incubation period, only 23 (0.6%) were infected with BTV. Viraemia in the sheep extended for up to 19 days post-inoculation. No infected midges, however, were detected from 14 days post-infection.  相似文献   

12.
Bluetongue (BT) is an infectious disease of ruminants that has spread northwards in Europe during the last decade. The aetiological agent of the disease is an arbovirus [bluetongue virus (BTV)] that belongs to the genus Orbivirus (family Reoviridae). The virus is transmitted by certain species of biting midge within the genus Culicoides (Diptera: Ceratopogonidae). Information on the vector status of the Culicoides species in a specific area will be essential to predict the risk for BTV incursion. Field-collected Culicoides (Avaritia) imicola Kieffer from South Africa were fed on blood containing several Spanish isolates of BTV. Despite the high virus concentrations in the bloodmeal (5.1-6.4 log(10) TCID(50) /mL of blood), virus was recovered from <1% of midges assayed after incubation. Virus concentrations >2.5 log(10) TCID(50) /midge in individual infected C. imicola suggest virus replication with possible risk for transmission to susceptible vertebrate hosts in the field for at least two of the serotypes assayed (BTV-1 and BTV-2). A third serotype (BTV-4) was very close to the estimated threshold for transmission. The relatively low to near refractory status of C. imicola compared with other vector species such as Culicoides bolitinos supports previous results, indicating that Culicoides species other than C. imicola may play a more important role in the epidemiology of BTV.  相似文献   

13.
Field-collected South African Culicoides species (Diptera, Ceratopogonidae) were fed on sheep blood containing bluetongue virus (BTV) represented by 13 low-passage reference serotypes: -1, -2, -4, -6, -7, -8, -9, -10, -11, -12, -13, -16 and -19. After 10 days of extrinsic incubation at 23.5 degrees C, of the 13 serotypes used, seven were recovered from C. (Avaritia) imicola Kieffer and 11 from C. (A.) bolitinos Meiswinkel. Virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. In addition, BTV was recovered from three non-Avaritia Culicoides species, namely C. (Remmia) enderleini Cornet & Brunhes (BTV-9), C. (Hoffmania) milnei Austen (BTV-4) and C. (H.) zuluensis de Meillon (BTV-16). No virus could be recovered from 316 individuals representing a further 14 Culicoides species. In Culicoides species fed on blood containing similar or identical virus titres of distinct BTV serotypes, significant differences were found in virus recovery rates. The results of this study confirm the higher vector competence of C. bolitinos compared with C. imicola.  相似文献   

14.
将蓝舌病毒(BTV)13型S7与L3基因同时插入杆状病毒双表达载体pEastBacDual,获得重组杆状病毒rvBacBTVP37。该病毒在昆虫细胞中同时高水平表达BTV13 VP3与VP7蛋白,可以高效自动装配出20面体的60 ̄70nm空心颗粒。分析表明,所获颗粒为空心的BTV核心样颗粒(CLP),其成分为VP3与VP7,不含BTV其它任何蛋白与核酸。这种装配需要VP3与VP7的共同参与,二者缺  相似文献   

15.
The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1-VP7) and 3 non-structural proteins (NS1-NS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4.  相似文献   

16.
我国存在多种血清型流行性出血热病毒(Epizootic haemorrhagic disease virus,EHDV)的流行,但尚未有关于EHDV-10型毒株的分离报道。为了解云南省EHDV的流行情况,2012~2015年,本研究在云南省设立江城、师宗、芒市三个监控点,定期采集监控动物血液,接种幼仓鼠肾细胞(Baby hamster kidney cell,BHK-21)进行病毒分离;通过PCR检测、血清中和试验、琼脂糖凝胶电泳和电镜观察等方法对分离病毒进行鉴定;对分离毒株的Seg-2/VP2与Seg-3/VP3基因节段进行克隆、测序与序列分析。2013年在云南省师宗县的哨兵牛上分离出一株EHDV毒株(YNSZ-V277-2013),病毒可引起BHK-21细胞出现圆缩、裂解的细胞病变(Cytopathic effect,CPE);电镜下病毒粒子呈球形,无囊膜,表面有大量纤维突,直径在70~80nm之间;病毒基因组dsRNA的琼脂糖凝胶电泳显示分离毒株与其他血清型EHDV一致,呈现"3-3-3"的电泳带型;序列分析显示YNSZ-V277-2013毒株的Seg-2/VP2与Seg-3/VP3序列与日本EHDV-10型毒株(ON-4/N/98)相似度最高,分别为97.5%/98.5%与98.1%/99.8%,证实分离毒株为EHDV-10型;系统发育分析显示YNSZ-V277-2013毒株的Seg-2与日本EHDV-10型毒株(ON-4/N/98)的亲缘关系最近,Seg-3与分离至日本和澳大利亚的EHDV毒株同属Eastern型。本研究首次报道了EHDV-10型毒株在我国的分离以及分离毒株的Seg-2与Seg-3基因序列特征,为进一步开展中国EHDV-10型的流行病学调查与致病性研究提供了基础。  相似文献   

17.
Epizootic hemorrhagic disease (EHD), one of the most important infectious diseases of white-tailed deer (Odocoileus virginianus), is vectored by species of midges in the genus Culicoides. Although vector borne, fecal shedding of EHD virus, serotype 2 has been reported from infected deer in a previous study. To evaluate the potential for fecal and oral shedding, oral and rectal swabs were obtained on day 8 post-inoculation from white-tailed deer fawns experimentally infected with EHD virus, serotype 1 (EHDV-1). Eight deer were viremic for EHDV-1; virus was detected in oral swabs from three (38%) and in rectal swabs from four (50%). The ability to isolate EHDV-1 in oral secretions or feces was not dependent on being able to detect clinical disease. These results indicate that in a relatively large proportion of EHDV-1 infected deer, virus can be detected in feces and oral secretions. Although more work is necessary, such shedding may be important in experimental studies or pen situations where deer-to-deer contact is prevalent and intense.  相似文献   

18.
In 2006, a strain of bluetongue virus serotype 8 (BTV-8) of sub-Saharan origin was responsible for the first outbreaks in recorded history of clinical bluetongue disease (BT) in northern Europe. In this study, we examine the oral susceptibility of Culicoides (Avaritia) imicola Kieffer (Diptera: Ceratopogonidae) and other livestock-associated Culicoides species from southern Africa to infection with several strains of BTV-8. Following feeding using an artificial membrane-based method and incubation, virus was found in <1% of C. imicola individuals tested. Higher rates of susceptibility were found, however, for a variety of other South African species, including Culicoides (Avaritia) bolitinos Meiswinkel. Although these results do not preclude the role of C. imicola as a vector of BTV-8, its low susceptibility to BTV indicates that other less abundant Culicoides species may have the potential to play decisive roles in the epidemiology of this virus and should not be excluded from risk assessment studies.  相似文献   

19.
《Gene》1997,190(1):119-129
The baculovirus expression vector is a eukaryotic DNA viral vector for the cloning and expression of foreign genes in cultured lepidopteran insect cells and insects. It has become an important tool for the large-scale production of recombinant proteins for a variety of applications including the structure-function analysis of genes and their gene products. We have developed a number of baculovirus multigene expression vectors and utilized these to understand the assembly process of multicomponent capsid structures of large viruses such as bluetongue virus (BTV), a member of the Orbivirus genus within the family Reoviridae. BTV is some 810 Å in diameter and comprised of two protein shells containing four major proteins, VP2, VP5, VP7 and VP3, surrounding a genome of ten double-stranded RNA segments and three minor proteins (VP2, VP4 and VP6). BTV is the etiological agent of a sheep disease that is sometimes fatal in certain parts of the world (e.g., Africa, Asia, and the Americas). Using baculovirus multigene vectors, we have co-expressed various combinations of BTV genes in insect cells and produced structures that mimic the various stages of BTV assembly. For example, co-expressed VP3 and VP7 form BTV core-like particles, while co-expressed VP2, VP5, VP7 and VP3 form BTV virus-like particles. Using deletion, point and domain switching analyses of each protein, we have been able to identify certain sequences in the VP7 and VP3 proteins that are essential for the assembly of core-like particles. These expression and biochemical studies have been complemented by collaboration studies using cryoelectron microscopy and image processing analyses to provide the three-dimensional structure of the expressed particles. In addition and with other associates, we have used X-ray crystallography of VP7 to deduce its atomic structure. Extensive studies on the immune responses elicited by these self-assembled particles, and chimeric derivatives involving various foreign antigens, have been carried out. Finally, using as little as 10 μg of the self-assembled virus-like particles, we have shown that they can confer long-lasting protection in sheep against BTV.  相似文献   

20.
Switzerland is historically recognized by the Office Internationale des Epizooties as free from bluetongue disease (BT) because of its latitude and climate. With bluetongue virus (BTV) moving north from the Mediterranean, an entomological survey was conducted in Switzerland in 2003 to assess the potential of the BTV vectors present. A total of 39 cattle farms located in three geographical regions, the Ticino region, the Western region and the region of the Grisons, were monitored during the vector season. Farms were located in areas at high risk of vector introduction and establishment based on the following characteristics: annual average temperature > 12.5 degrees C, average annual humidity >or= 60%, cattle farm. Onderstepoort black light traps were operated at the cattle farms generally for one night in July and one night in September. A total of 56 collections of Culicoides (Diptera: Ceratopogonidae) were identified morphologically. Only one single individual of Culicoides (Avaritia) imicola, the major Old World vector of BTV, was found in July 2003 in the Ticino region, one of the southernmost regions of Switzerland. In the absence of further specimens of C. imicola from Switzerland it is suggested that this individual may be a vagrant transported by wind from regions to the south of the country where populations of this species are known to occur. Alternative potential BTV vectors of the Culicoides (Culicoides) pulicaris and Culicoides (Avaritia) obsoletus complexes were abundant in all sampled regions with individual catches exceeding 70 000 midges per trap night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号