首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
宁夏60份粳稻种质资源遗传多样性分析   总被引:3,自引:0,他引:3  
试验用SSR分子标记对60份宁夏粳稻种质资源进行遗传多样性分析。103对SSR引物表现多态性的有58对,共扩增出212条多态性条带,等位变异范围为2~9,平均每对引物3.7个;多态性信息含量(PIC)变幅为0.032~0.788,平均为0.403;高多态性位点主要发生在3号、6号和11号染色体上,而无多态性或低多态性位点主要发生在1号和10号染色体上;成对供试材料的遗传相似系数GS值变幅为0.642~0.958,平均为0.790,单个供试材料的平均GS值变幅为0.710~0.816,平均为0.781,亲缘关系较近;UPGMA聚类表明,在遗传相似系数约0.785处,供试材料可被分为11类,大部分材料被聚在一类中。  相似文献   

2.
A total of 29 simple sequence repeat (SSR) markers were used to analyze the genetic diversity of 150 accessions of cultivated rice (Oryza sativa L.) from Korea, China, and Japan. A total of 375 alleles were detected with an average of 12.9 per locus. The averaged values of gene diversity and polymorphism information content (PIC) for each SSR locus were 0.7001 and 0.6683, respectively. Alleles per locus in Korean rice were 8.8, whereas 8.1 and 7.2 alleles per locus were found in Chinese and Japanese rice, respectively. The mean gene diversity in Korean, Chinese, and Japanese rice was 0.6058, 0.6457, and 0.5174, respectively, whereas the mean PIC values for each SSR locus were 0.5759, 0.6138, and 0.4881, respectively. The genetic diversity of the Korean and Chinese cultivars was higher than that of the Japanese cultivars, and the genetic diversity ofjaponica was higher than that ofindica. The model-based structure analysis revealed the presence of three subpopulations, which was basically consistent with clustering based on genetic distance. An AMOVA analysis showed that the between-population component of genetic variance was less than 22% in contrast to 78% for the within-population component. The overallFST value was 0.2180, indicating a moderate differentiation among groups. The results could be used for designing effective breeding programs aimed at broadening the genetic bases of commercially grown varieties.  相似文献   

3.
云南栽培稻种SSR 遗传多样性比较   总被引:13,自引:0,他引:13  
采用64个SSR标记对96份云南水稻(Oryz a sativa)地方品种和选育品种的遗传多样性进行比较分析。结果发现64个标记都具有多态性, 共检测到741个等位基因, 每个多态性位点检测到的等位基因数为2-29个, 平均11.57个; Nei基因多样性指数(He)范围在0.345(RM321)-0.932(RM1)之间, 平均为0.56。水稻品种的遗传多样性并非按地理位置均匀分布, 而是在相 似系数为0.17的水平上明显分为2个不同类群, 即籼稻类群和粳稻类群, 且籼粳亚种间的SSR多样性差异不明显, 籼稻平均等位基因数(Ap)和Nei基因多样性指数(Ap=10.6, He=0.46)与粳稻品种(Ap=10.7, He=0.48)十分接近, 可能与这些品种间存在一定频率的基因交流有关。糯稻和非糯稻在籼稻群和粳稻群中都有表现, 没有特别的分布规律。云南栽培稻选育品种与地方稻亲缘关系较近, 其遗传基础可能来源于云南水稻地方品种。本研究结果表明, SSR标记能较好地区分云南栽培稻品种, 且云南水稻地方品种遗传多样性丰富, 存在大量的优质性状可供育种实践选择。  相似文献   

4.
30个粳稻品种SSR标记遗传多样性分析   总被引:12,自引:2,他引:10  
选用分布于水稻12条染色体上的64对SSR引物,对江苏省育成以及日本引进的粳稻品种共30份材料进行遗传多样性分析。结果表明,有50对SSR引物在30个品种间表现为多态性。共检测到140个等位基因,每对引物的等位基因数变幅为2~5个,平均为2.8个。有效等位基因为94.336个,平均为1.887。每个SSR位点的多态性信息量(PIC)变化范围为0.064~0.752,平均为0.410。30个品种间的遗传相似系数变幅为0.386~0.956之间,平均值为0.719,且81.4%的供试品种其遗传相似系数在0.600~0.800之间,亲缘关系较近;以遗传相似系数为原始数据,按UPGMA方法将30个品种划分为3大类群,结合系谱分析结果表明,江苏省育成的水稻品种遗传多样性不够丰富,多数品种间的亲缘关系较近,欲进一步提高江苏省水稻产量还需拓宽亲本选择范围,扩大遗传背景。  相似文献   

5.
采用64个SSR标记对96份云南水稻(Oryza sativa)地方品种和选育品种的遗传多样性进行比较分析。结果发现64个标记都具有多态性,共检测到741个等位基因,每个多态性位点检测到的等位基因数为2—29个,平均11.57个:Nei基因多样性指数(He)范围在0.345(RM321)-0.932(RM1)之间,平均为0.56。水稻品种的遗传多样性并非按地理位置均匀分布,而是在相似系数为0.17的水平上明显分为2个不同类群,即籼稻类群和粳稻类群,且籼粳亚种间的SSR多样性差异不明显,籼稻平均等位基因数(Ap)和Nei基因多样性指数(Ap=10.6,He=0.46)与粳稻品种(Ap=10.7,He=0.48)十分接近,可能与这些品种间存在一定频率的基因交流有关。糯稻和非糯稻在籼稻群和粳稻群中都有表现,没有特别的分布规律。云南栽培稻选育品种与地方稻亲缘关系较近,其遗传基础可能来源于云南水稻地方品种。本研究结果表明,SSR标记能较好地区分云南栽培稻品种,且云南水稻地方品种遗传多样性丰富,存在大量的优质性状可供育种实践选择。  相似文献   

6.
Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei’s genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s.  相似文献   

7.
We report here on the phylogenetic analysis, population substructure, and identification of molecular tags of 25 popular rice varieties and four landraces from different ecological belts of India employing a set of 52 simple sequence repeat (SSR) markers. Genetic analysis using the SSR markers categorized the genotypes into two major clusters, distributed according to their pedigree. Population structure analysis suggested that the optimum number of subpopulations was three (K?=?3) in the popular varieties and landraces. At K?=?5 the allelic distribution was much more similar to the phylogenetic dendrogram. The molecular diversity and population structure analysis indicated that there is not much variation among the popular rice cultivars of India. The study has identified SSR markers producing unique alleles, which should aid in the precise identification, maintenance, and genetic purity analysis of rice varieties.  相似文献   

8.
Sixteen polymorphic Simple sequence repeat (SSR) markers were used to determine the genetic diversity and varietal identification among 38 soybean (Glycine max (L.) Merr.) genotypes which are at present under seed multiplication chain in India. A total of 51 alleles with an average of 2.22 alleles per locus were detected. The polymorphic information content (PIC) among genotypes varied from 0.049 (Sat_243 and Satt337) to 0.526 (Satt431) with an average of 0.199. The pair wise genetic similarity between soybean varieties varied from 0.56 to 0.97 with an average of 0.761. These 16 SSR markers successfully distinguished 12 of the 38 soybean genotypes. These results suggest that used SSR markers are efficient for measuring genetic diversity and relatedness as well as identifying varieties of soybeans. Diverse genetic materials may be used for genetic improvements of soybean genotypes.  相似文献   

9.
Microsatellite or simple sequence repeat (SSR) marker analysis was carried out to assess allelic diversity and prepare a DNA fingerprint database of 24 rice genotypes including three premium traditional Basmati, 9 cross-bred Basmati, a local scented selection, eight indica and three japonica rice varieties. A total of 229 alleles were detected at the 50 SSR loci and 49 alleles were in fact present in only one of the 24 varieties. The size difference between the smallest and largest allele varied from 1 (RM333) to as high as 82 (RM206). Multiple alleles were observed at 13 loci. Polymorphism information content (PIC) values ranged between 0.0 (RM167) to 0.78 (RM170), with an average of 0.62 per marker. At 15 of the SSR loci, traditional and cross-bred Basmati rice varieties amplified different alleles than those in the indica andlor japonica rice varieties. A number of SSRs have been identified, which can be used to differentiate among the traditional Basmati varieties and between traditional Basmati and other cross-bred Basmati or long grain, non-Basmati rice varieties. Genetic relationships among rice genotypes as determined by UPGMA cluster analysis and three-dimensional scaling basedon Principal Component Analysis showed that the three traditional Basmati rice varieties are closely related and have varying degree of similarity with other cross-bred Basmati rice varieties. Further implications of these results in genotype identification, monitoring purity and adulteration, and plant variety protection are discussed.  相似文献   

10.
Simple sequence repeats (SSR) are the DNA markers of choice for genetic analysis in rice (Oryza sativa L.) due to their abundance, high polymorphism and simple assays using agarose gel electrophoresis. In an attempt to find most variable SSR loci for the agarose gel system, the relationship between SSR length and level of polymorphism was evaluated in a set of eight diverse rice genotypes using 201 random SSR loci of different repeat motifs and lengths, representing both genic and intergenic sequences from the 12 rice chromosomes. There was a positive correlation between SSR length and average number of alleles per locus but linearity of this relationship was limited to the SSR length range of 10–70 bp. The highest level of polymorphism was in the SSR length range of 51–70 bp, beyond which there was stabilization and then decline of polymorphism in SSRs longer than 70 bp. Proportion of polymorphic loci in the different SSR length groups also followed similar pattern with even sharper decline of polymorphism in the highest size range. Here we describe a genome wide set of 436 validated highly variable SSR (HvSSR) markers with repeat lengths of 51–70 bp for their consistent amplification and high polymorphism. In the parental lines of three different mapping populations, the HvSSR loci showed more than twice the level of polymorphism than random SSR markers with average repeat length of 34 bp, and therefore are suitable for QTL mapping and fingerprinting studies in rice employing agarose gels.  相似文献   

11.
基于SSR标记的贵州薏苡种质资源遗传多样性?分析   总被引:1,自引:0,他引:1  
利用SSR标记研究了22份薏苡种质的遗传多样性,用11对扩增带型稳定的SSR引物从供试材料中检测出105个等位基因变异,每对引物检测等位基因4~20个,平均9.55个。SSR引物的PIC介于0.3048~0.9238,平均多态性信息量为0.8255。利用UPGMA聚类分系法将供试自交系划分为4类,该划分结果与根据地理来源、种质系谱的分类结果基本一致。SSR分子标记辅助的种质改良是薏苡品种改良的重要途径。  相似文献   

12.
Allele identification for agro-morphological traits and stress resistance is a major concern across the globe for improving productivity of finger millet. Here, we used 46 genomic and 58 genic simple sequence repeats (SSRs) markers in a set of 66 accessions used to constitute a global mini-core collection for analysing their genetic structure as a population and establishing association among markers and twenty morphological traits including resistance to finger blast. Phenotypic data revealed a wide range of variation for all traits except flag leaf width and flag leaf sheath width. We got amplification of 81 alleles by the 31 genomic SSRs at an average of 2.61 alleles per locus. Polymorphism information content (PIC) values varied from 0.21 to 0.75 and average gene diversity was 0.49. Structure analysis of the population using the genomic SSR data divided the accessions into two clusters where Indian and exotic accessions were grouped in separate clusters. Genic SSRs which were associated with blast resistance genes, amplified 36 alleles at an average of 2 alleles per locus. PIC values ranged from 0.32 to 0.37 and average gene diversity was 0.45. Population structure analysis using data from these SSRs grouped the accessions into three clusters, which broadly correspond to their reaction to blast disease. Twenty-two significant associations were found using the GLM approach for 20 agro-morphological traits both in 2012 and 2014, while, 7 and 5 significant marker-trait associations were identified using MLM in 2012 and 2014 respectively. The SSR markers FMBLEST35 and FMBLEST36 designed from the Pi21 gene sequence of rice were found to be associated with blast disease resistance in finger millet indicating that the gene homologues play a significant role in an important role for neck blast resistance.  相似文献   

13.
Genetic relationships among Indian aromatic and quality rice (Oryza sativa) germplasm were assessed using 30 fluorescently labeled rice microsatellite markers. The 69 rice genotypes used in this study included 52 Basmati and other scented/quality rice varieties from different parts of India and 17 indica and japonica varieties that served as controls. A total of 235 alleles were detected at the 30 simple sequence repeat (SSR) loci, 62 (26.4%) of which were present only in Basmati and other scented/quality rice germplasm accessions. The number of alleles per locus ranged from 3 to 22, with an average of 7.8, polymorphism information content (PIC) values ranged from 0.2 to 0.9, with an average of 0.6, and the size range between the smallest and the largest allele for a given microsatellite locus varied between 3 bp and 68 bp. Of the 30 SSR markers, 20 could distinguish traditional Basmati rice varieties, and a single panel of eight markers could be used to differentiate the premium traditional Basmati, cross-bred Basmati, and non-Basmati rice varieties having different commercial value in the marketplace. When estimates of inferred ancestry or similarity coefficients were used to cluster varieties, the high-quality Indian aromatic and quality rice genotypes could be distinguished from both indica and japonica cultivars, and crossbred varieties could be distinguished from traditional Basmati rices. The results indicate that Indian aromatic and quality germplasm is genetically distinct from other groups within O. sativa and is the product of a long, independent pattern of evolution. The data also suggest that there is scope for exploiting the genetic diversity of aromatic/quality rice germplasm available in India for national Basmati rice breeding programs.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

14.
宁夏水稻选育品种遗传多样性和亲缘关系分析   总被引:3,自引:0,他引:3  
选择31份宁夏近年来育成或审定的水稻品种(系),利用分布于12条染色体的36对SSR引物进行遗传多样性和遗传距离分析.共检测到159个等位基因,品种间不同位点等位基因数目不等,平均4.4个.Nei基因多样性指数变幅为0.031 7~0.844 4,平均为0.508 8.按育成或审定年份,把31份水稻分为3组,SSR分析...  相似文献   

15.
Detecting quantity trait locus (QTLs) and elite alleles that are associated with grain-filling rate (GFR) in rice is essential for promoting the utilization of hybrid japonica rice and improving rice yield. Ninety-five varieties including 58 landraces and 37 elite varieties from the core germplasm collection were genotyped with 263 simple sequence repeat (SSR) markers. The GFR of the 95 varieties was evaluated at five stages, 7, 14, 21, 28 and 35 days after flowering (DAF) both in 2011 and 2012. We found abundant phenotypic and genetic diversity in the studied population. A population structure analysis identified seven subpopulations. A linkage disequilibrium (LD) analysis indicated that the levels of LD ranged from 60.3 cM to 84.8 cM and artificial selection had enhanced the LD. A time-course association analysis detected 31 marker-GFR associations involving 24 SSR markers located on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 11 and 12 of rice at five stages. The elite alleles for high GFR at each stage were detected. Fifteen excellent parental combinations were predicted, and the best parental combination ‘Nannongjing62401×Laolaihong’ could theoretically increase 4.086 mg grain-1 d-1 at the five stages. Our results demonstrate that the time-course association mapping for GFR in rice could detect elite alleles at different filling stages and that these elite alleles could be used to improve the GFR via pyramiding breeding.  相似文献   

16.
为了探索水稻(Oryza sativa L.)地方品种的遗传多样性及其有效保育方法,对采自云南省17个村寨的82个水稻地方品种和3个国际常用的典型籼稻和粳稻品种进行了微卫星(SSR)分子标记的分析.利用19对SSR引物在85个水稻品种中共扩增出了83个基因型,其分子量变异在100~500 bp之间.基于各品种SSR基因型遗传相似系数聚类分析而获得的UPGMA树状图表明各水稻品种之间存在较大的遗传多样性,其相似系数变异在0.15~0.90之间.但这些地方品种的遗传多样性并非呈均等的地理分布.这85个水稻品种在相似系数为0.52之处分为二组,其中一组包括几乎所有的籼稻品种,而另一组包括全部的粳稻品种,表明SSR标记能很好揭示水稻籼-粳分化.同时,有些来自不同采集地的同名品种表现出一定的遗传差异,说明同名异物的现象存在.云南水稻地方品种具有丰富的遗传多样性,对其有效保育十分重要和迫切,但只有根据遗传多样性的水平和分布特点,采用正确的保育对策和取样方法才能确保对云南水稻地方品种的有效保育.结果进一步表明,选用适当的微卫星引物,可以为准确鉴定籼稻和粳稻品种及研究其进化规律提供有效的分子标记方法,并有利于有目标的水稻遗传资源保育和育种创新.  相似文献   

17.
微卫星标记分析水稻地方品种30年的遗传变异   总被引:2,自引:0,他引:2  
Yan HM  Dong C  Zhang EL  Tang CF  A XX  Yang WY  Yang YY  Zhang FF  Xu FR 《遗传》2012,34(1):87-94
为揭示水稻(Oryza sativa)地方品种30年的遗传变异状况,文章通过60个SSR标记,对元阳哈尼梯田农户在20世纪70年代种植的6个(简称"过去的品种")和近10年间种植的对应6个(简称"当前的品种")代表性水稻地方品种进行检测。结果表明,共检测到159个等位基因(Na),等位基因数1~4不等,当前的品种较过去的品种减少7个等位基因。平均每个标记检测到的等位基因数(Na)、有效等位基因数(Ne)、基因型多样性(H′)和位点多态信息含量(PIC)4个指标均为过去的品种高于当前的品种,分别是(Na)为2.567>2.450,(Ne)为2.052>1.968,(H′)为0.768>0.722,(PIC)为0.469>0.439。基于60个SSR标记,过去6个品种间的遗传相似性系数(GS)平均值为0.437,变幅为0.117~0.667,而当前6个品种间平均值为0.473,变幅为0.200~0.700。总的说来,水稻地方品种经过30年自然和人工选择,遗传多样性降低,不同品种存在等位基因大小的差异程度不同。  相似文献   

18.
Genetic diversity among rice genotypes, including 15 indica basmati advance lines and 5 basmati improved varieties were investigated by 28 SSR markers including one indel marker. The SSRs covered all the 12 chromosomes that distributed across the rice genomes. The mean number of alleles per locus was 3.60, showing average number of polymorphism information content was 0.48. A total of 101 alleles were also identified from the microsatellite marker loci. A number of SSR markers were also identified that could be utilized to differentiate between rice genotypes. Pair wise Nei’s genetic distance between rice genotypes ranged from 0.07 to 0.95. The dendrogram based on cluster analysis by using SSR polymorphism that grouped the 20 genotypes of rice in to five clusters based on their genetic similarity. The result could be useful for the identification and selection of the diverse genotypes for the future cross breeding program and development of new rice varieties.  相似文献   

19.
SSR标记揭示的云南地方稻品种遗传多样性及其保育意义   总被引:18,自引:0,他引:18  
为了探索水稻(Oryza sativa L.)地方品种的遗传多样性及其有效保育方法,对采自云南省17个村寨的82个水稻地方品种和3个国际常用的典型籼稻和粳稻品种进行了微卫星(SSR)分子标记的分析。利用19对SSR引物在85个水稻品种中共扩增出了83个基因型,其分子量变异在100~500 bp之间。基于各品种SSR基因型遗传相似系数聚类分析而获得的UPGMA树状图表明各水稻品种之间存在较大的遗传多样性,其相似系数变异在0.15~0.90之间。但这些地方品种的遗传多样性并非呈均等的地理分布。这85个水稻品种在相似系数为0.52之处分为二组,其中一组包括几乎所有的籼稻品种,而另一组包括全部的粳稻品种,表明SSR标记能很好揭示水稻籼-粳分化。同时,有些来自不同采集地的同名品种表现出一定的遗传差异,说明同名异物的现象存在。云南水稻地方品种具有丰富的遗传多样性,对其有效保育十分重要和迫切, 但只有根据遗传多样性的水平和分布特点,采用正确的保育对策和取样方法才能确保对云南水稻地方品种的有效保育。结果进一步表明,选用适当的微卫星引物,可以为准确鉴定籼稻和粳稻品种及研究其进化规律提供有效的分子标记方法,并有利于有目标的水稻遗传资源保育和育种创新。  相似文献   

20.
中国东北地区水稻主要栽培品种的遗传多样性分析   总被引:4,自引:1,他引:3  
利用68对SSR引物对91份粳稻品种进行了遗传多样性分析。研究结果共检测到293个等位基因,平均4.3个;平均多态信息含量(PIC)为0.313,变动范围为0.022~0.825。RM333和RM206的等住基因数最多,分别为14、10;且PIC也最高,分别为0.825、0.805。聚类和群体差异分析结果表明,东北三省水稻品种的遗传基础狭窄。黑龙江省和吉林省、黑龙江省和日本、吉林省和日本的水稻品种间遗传距离都很小.分别为0.083、0.084、0.090,而辽宁省与吉林省、黑龙江省的水稻品种遗传基础有一些差异。9个地理来源的品种聚类结果,可分为5个大类群,黑龙江省、吉林省、日本和韩国形成第Ⅰ类群;北京和辽宁省归为第Ⅱ类群;中国台湾、云南省、美国分别为第Ⅲ、第Ⅳ和第Ⅴ类群。东北三省是重要的粳稻生产基地,但遗传基础非常狭窄,要克服遗传脆弱性应从地理位置较远的国家或地区收集更丰富的遗传资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号