首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

2.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Nitrite (NO2 ) is an intermediate in a variety of soil N cycling processes. However, NO2 dynamics are often not included in studies that explore the N cycle in soil. Within the presented study, nitrite dynamics were investigated in a Nothofagus betuloides forest on an Andisol in southern Chile. We carried out a 15N tracing study with six 15N labeling treatments, including combinations of NO3 , NH4 + and NO2 . Gross N transformation rates were quantified with a 15N tracing model in combination with a Markov chain Monte Carlo optimization routine. Our results indicate the occurrence of functional links between (1) NH4 + oxidation, the main process for NO2 production (nitritation), and NO2 reduction, and (2) oxidation of soil organic N, the dominant NO3 production process in this soil, and dissimilatory NO3 reduction to NH4 + (DNRA). The production of NH4 + via DNRA was approximately ten times higher than direct mineralization from recalcitrant soil organic matter. Moreover, the rate of DNRA was several magnitudes higher than the rate of other NO3 reducing processes, indicating that DNRA is able to outcompete denitrification, which is most likely not an important process in this ecosystem. These functional links are most likely adaptations of the microbial community to the prevailing pedo-climatic conditions of this Nothofagus ecosystem.  相似文献   

4.
Summary Non-nodulatedalnus glutinosa plants were grown for 6 weeks in nutrient solutions using 3 combined-N treatments (NO3; NO3/NH4; and NH4) at a total N level of 4 meq.l–1, and growth was ccmpared with nodulated plants at zero N (N2 fixation). Of the combined-N sources, 100 per cent NH4 resulted in the highest dry matter yields when the solution pH was adjusted daily atc. 6. The dry matter yield was lowest with NO3.During the first 3 weeks, the yield of the N2-fixing plants was as high as that of the NH4 plants, but fell relatively behind during the second 3-week period. These effects could be attributed to higher initial N contents and higher shoot:root ratios, respectively, in the N2-fixing plants. Specific rates of N acquisition in the root were of a comparable order of magnitude for the combined-N and zero-N treatments.When NO3 was taken up, it was almost completely reduced in the roots. Regardless of N source there was a large excess of cations (C) relative to inorganic anions (A) in the plants, which was presumed to be balanced by an equivalent amount of organic anions (C-A). The relatively small differences in generation of organic anions for the various modes of N supply indicated the relative importance of the proton pump when NH4 or N2 was the N source. Proton or hydroxyl-ion effluxes, calculated on the basis of plant analyses, were generally in good agreement with measured excretion values. The acidity generation with N2 fixation amounted toc. 0.5 meq H+.mmol–1 Norg, which was distinctly higher than the range of 0.1–0.2 mentioned by Raven and Smith43 for dinitrogen-fixing plants.Without pH adjustment, specific rates of cation uptake and carboxylate generation were strongly depressed as the acidity increased, when NO3/NH4, NH4 and N2 were the N sources. Growth ofAlnus glutinosa appeared to be still normal at a pH ofc. 2.8. During the final 3 weeks, only the NH4 plants ceased growing at a pH of 2.6.  相似文献   

5.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

6.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

7.
The effects of the ammonium (NH4+) and nitrate (NO3-) forms of nitrogen and NaCl on the growth, water relations and photosynthesis performance of sunflower (Helianthus annuus L.) were examined under glasshouse conditions. Eight-day-old plants of cv. Hisun 33 were subjected for 21 days to Hoagland's nutrient solution containing 8 mol m-3N as NH4+or NO3-, and salinised with 0, 60, or 120 mol m-3NaCl. Fresh weights of shoots and roots, and leaf area of NO3-supplied non-salinised plants were significantly greater than those of NH4+-supplied non-salinised plants. But addition of NaCl to the rooting medium of these plants had more inhibitory effect on the growth of NO3--supplied plants than on NH4+-supplied plants. Both leaf water and osmotic potentials of plants grown with NH4+were lower than those of plants given NO3-under both non-saline and saline conditions. Chlorophylls a and b concentrations were higher in plants grown with NH4+than N03--supplied plants at the lower two levels of salinisation. The rate of photosynthesis in plants was considerably higher in non-salinised plants grown with NO3-than with NH4+, but with increase in salinisation the photosynthesis rate decreased in NO3--supplied plants, but not in those given NH4+. The rate of transpiration was increased significantly by salinisation in NO3--supplied plants, but not consistently so in NH4+-supplied plants. The stomatal conductances were much higher in plants given NO3-than with NH4+when grown under non-saline conditions, but not when salinised. As a consequence, water-use efficiency in NO3--supplied control plants was better than in NH4+-supplied under non-saline conditions, but worse under saline conditions. The different forms of nitrogen and the addition of NaCl to the growing medium did not affect the relative intercellular concentrations of CO2 (Ci/Ca). Overall, the NH4+form of nitrogen inhibited the growth of sunflowers under non-saline conditions, but NO3-and NaCl interacted to inhibit growth more than did NH4+under saline conditions.  相似文献   

8.
The kinetics of NH4 + and NO3 uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the Vmax of NH4 + uptake was higher than that of NO3 uptake. The Km of NH4 + uptake and Km of NO3 uptake differed not significantly. When both NH4 + and NO3 were present, the Vmax for NH4 + uptake became slightly higher, and the Km for NH4 + uptake remained in the same order. Under these conditions the NO3 uptake was almost totally inhibited over the whole range of concentrations used (10–1000 μM total N). This inhibition by NH4 + occurred during the first two hours after addition. ei]{gnA C}{fnBorstlap}  相似文献   

9.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

10.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

11.
Solution culture studies have shown that plant uptake of NH4 + and NO3 - can be improved by increasing the concentration of Ca2+ in the root environment: the same may be true for grass grown in soil culture. An experiment was set up to see whether gypsum (CaSO4 2H2O) increased the rate at which perennial ryegrass absorbed 15NH4 + and 15NO3 - from soil.The results demonstrated that gypsum increases the rates of uptake of both NH4 + and NO3 - by perennial ryegrass. However because there was little potential for mineral-N loss from the experimental system, either by gaseous emission or by N immobilization, long term improvements in fertilizer efficiency were not observed. Nitrogen cycling from shoots to roots commenced once net uptake of N into plants had ceased. Labelled N transferred thus to roots underwent isotopic exchange with unlabelled soil N. It was suggested that this exchange of N might constitute an energy drain from the plant, if plant organic N was exchanged for soil inorganic N. The fact that the exchange occurred at all cast doubt on the suitability of the 15N-isotope dilution technique for assessing fertilizer efficiency in medium to long term experiments. There was evidence that the extra NO3 --N taken up by plants on the all-nitrate treatments as a result of gypsum application, was reduced in root tissue rather than in shoots, but to the detriment of subsequent root growth and N uptake.  相似文献   

12.
We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.  相似文献   

13.
Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+–N and NO3–N, with one N form labelled with 15N at a time, and in the case of glycine, also labelled with 13C, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO315N, respectively, recovered in the plant–soil system, and the major part of 15N in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized 15N to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
After growth for 17 to 36 days on nutrient solutions with NH4NO3 as nitrogen source (pH 4.2) dry matter of sorghum genotype SC0283 was much less affected by Al (1.5 and 3.0 ppm) than that of genotype NB9040. In the absence of Al both cultivars released protons into the nutrient solution as a result of an excess of cationic nutrients taken up. When Al was present, this proton efflux per unit dry weight increased drastically, especially with the sensitive genotype NB9040. Chemical analysis of plant material and continuous analyses of NO 3 and NH 4 + in the nutrient solution indicated, that the Al-induced shift in H+-balance of both genotypes could almost completely be attributed to a decreased NO 3 /NH 4 + uptake ratio. In vivo nitrate reductase activity (NRA) was reduced in the shoot of NB9040 and to a lesser degree in SC0283. Al-induced decrease in NRA was accompanied by similar percentual decreases in NO 3 tissue concentrations. Therefore this decrease is interpreted as being indirect,i.e., the consequence of the reduced NO 3 uptake of the plants. A direct repression of NRA by Al seems also unlikely because nitrate reductase activity of the roots (where cellular Al-concentrations should be higher than in shoots) was not affected in Al-treated plants of either genotype.  相似文献   

15.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

16.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

17.
The modelling of ion uptake by plants requires the measurement of kinetic and growth parameters under specific conditions. The objective of this study was to evaluate the effect of nine NH inf4 sup+ :NO inf3 sup− ratios on onions (Allium cepa L.). Twenty-eight to 84 day-old onion plants were treated with NH inf4 sup+ :NOf3/sup− ratios ranging from 0 to 100% of each ionic species in one mM solutions in a growth chamber. Maximum N influx (Imax) was assessed using the N depletion method. Except at an early stage, ionic species did not influence significantly Imax, the Michaelis constant (Km) and the minimum concentration for net uptake (Cmin). Imax for ammonium decreased from 101 to 59 pmole cm-2 s-1 while Imax for nitrate increased from 26 to 54 pmole cm-2 s-1 as the plant matured. On average, Km and Cmin values were 14.29 μM, and 5.06 μM for ammonium, and 11.90 μM and 4.54 μM for nitrate, respectively. In general, the effect of NH4 +:NO3 - ratios on root weight, shoot weight and total weight depended on plant age. At an early stage, maximum plant growth and N uptake were obtained with ammonium as the sole source of N. At later stages, maximum plant growth and N uptake were obtained as the proportion of nitrate increased in the nutrient solution. The was no apparent nutrient deficiency whatever NH4 +:NO3 - ratio was applied, although ammonium reduced the uptake of cations and increased the uptake of phosphorus. The research was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

18.
InMucuna pruriens var.utilis, grown with nitrate-N in a hydroponic split-root system, an Al avoidance reaction of root growth was observed, which was ascribed to local P stress in the Al containing compartment. The Al avoidance reaction was similar to the avoidance ofMucuna roots of acid subsoil in the field where roots grew preferentially in the topsoil. In the present paper the effect of different N forms (NO3 and NH4 +) on the reactions ofMucuna to Al were studied, since in acid soils N is present as a mixture of NO3 and NH4 +. No interaction between the N form and Al toxicity was found. A hydroponic split-root experiment with NH4NO3 nutrition, which is comparable to the situation in the field, showed that under these conditions Al avoidance did not occur. It is concluded that a relation between the Al avoidance reaction ofMucuna and P stress is still likely.Abbreviations Dr root diameter - Lpr total root length per plant - Lrw specific root length - NRA nitrate reductase activity - S/R shoot: root ratio  相似文献   

19.
Variations in the inorganic and organic composition of xylem exudate, growth and N content under contrasting forms of N supply in three cucumber cultivars (Hyclos, Medusa and Victory) were studied in glasshouse conditions. The plants were grown hydroponically with two NO3 -:NH4 + ratios (100:0 and 60:40).The xylem sap of Medusa grown with both N sources displayed an increase of organic N and carboxylate concentrations and a decrease of cations, inorganic anions and carbohydrates compared with that of those grown with NO3 - alone, showing a higher growth and N content in tissues and thus better utilization of N supplied as NO3 - and NH4 +. Mixed N nutrition in Hyclos caused the greatest amounts of NO3 - and NH4 + in xylem sap, lower root weight and N levels in the leaves, while its root was unable to generate an adequate supply of organic N compounds. Despite the levels of cations, inorganic and organic anions were reduced by the NH4 + supplied to Victory, the ionic balance in the xylem sap, growth and N content remained similar to that of those supplied with NO3 - alone. Finally, the cucumber cultivars studied here, responded differently to the form of N supplied, it may partly be due to their ability of assimilating N in the roots and partly to the form in which the N is translocated to the shoot.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号