首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
生命科学与人类疾病研究的重要模型——果蝇   总被引:18,自引:0,他引:18  
万永奇  谢维 《生命科学》2006,18(5):425-429
黑腹果蝇(Drosophilamelanogaster)是生物学研究中最重要的模式生物之一,它在遗传的染色体理论建立中起到非常重要的作用。由于果蝇自身独特的优势,20世纪70年代以来,它又在发育生物学、神经科学、人类疾病研究等领域得到广泛应用,作出许多新的重要贡献。果蝇在神经退行性疾病研究中是非常有用的模型。可以预期,随着研究手段的丰富及科学的发展,果蝇将作为一种理想的模式生物在生物医学中发挥更大的作用。  相似文献   

2.
果蝇是双翅目果蝇科果蝇属昆虫,用作模式生物的一般是常见的黑腹果蝇。果蝇在遗传与进化、胚胎发育、细胞生理等方面研究中是极为优良的模式动物。阐述了果蝇的特点和作为生物学研究材料的优势,以及由果蝇研究而产生的成果及实际意义。果蝇遗传物质结构相对简单,有大量的性状变异;摩尔根获得了诺贝尔奖,与那只"例外"的白眼果蝇和染色体不分离的"例外"现象息息相关。如今,在遗传学模式生物中,果蝇几乎成为研究遗传规律和遗传现象的头号选手。果蝇作为材料的研究几乎始终引领着生命科学,特别是遗传学和发育生物学的发展。  相似文献   

3.
生命科学研究中常用模式生物   总被引:3,自引:0,他引:3  
王凯 《生命科学研究》2010,14(2):156-165
模式生物是生命科学研究的重要材料,目前公认的用于生命科学研究的常见模式生物有噬菌体、大肠杆菌、酵母、线虫、果蝇、斑马鱼、小鼠、拟南芥等.这8种常用模式生物对生命现象的揭密和人类疾病治疗的探索等都所做出了重大贡献,对其在生命科学研究中的历史轨迹、各自优势、技术手段、热点研究、发展前景等系统而又简要的了解,有助于具体而又生动地体察到模式生物在今天生命科学发展中的重要地位和推动生命科学及医学进步的不可替代的巨大潜力.  相似文献   

4.
南楠  闫志鹏  张亚如  秦国华  桑楠 《昆虫学报》2022,65(12):1695-1700
果蝇Drosophila作为一种模式生物,具有生长周期短、繁殖能力强和研究成本低等优点。而且果蝇有65%的基因与人类同源,特别是其遗传背景简单的特点,使其在生物生长发育研究、病理机制研究和基因表达调控等研究中发挥重要作用。目前在果蝇中已发现8种胰岛素样肽,即果蝇胰岛素样肽1-8(Drosophila insulin-like peptide 1-8, Dilp1-8),而对于果蝇胰岛素信号通路的研究主要集中在其调控机体生长发育和能量代谢的方面,这些功能主要通过Dilp1-7来发挥作用。对于Dilp8的功能及其发挥作用的分子机制知之甚少。本文总结了自Dilp8被发现以来,人们对于其功能的研究结果。Dilp8主要在幼虫成虫盘和成年雌果蝇的卵巢中表达,其主要作用是调节果蝇的组织生长和发育时间,使果蝇生长为具有相对固定体型和一定对称性的个体。当果蝇幼虫在生长过程中受到损伤时,Dilp8会通过延缓发育时间来缓解异常生长。Dilp8被激活后,在中枢神经系统与其受体富含亮氨酸重复序列的G蛋白偶联受体3(leucine-rich repeat-containing G protein-coupled receptor 3, Lgr3)特异结合,从而抑制蜕皮激素的合成来控制果蝇生长发育。有研究表明Lgr3与果蝇性别调控有关。在成年雌果蝇中,Dilp8的主要作用是调节排卵能力。此外,肿瘤源性的Dilp8与果蝇的食欲减退有关。Dilp8/Lgr3与人类INSL3/RXFP2高度同源。对于Dilp8发挥作用的分子机制,还需研究者的进一步探索。  相似文献   

5.
果蝇(Drosophila melanogaster)作为最早用于研究心脏发育基因调控的模式生物,已经走过三十年的历程。果蝇心脏发育过程经历了胚胎期、幼虫期和成虫期三大阶段。在胚胎早期, Tinman、Dorsocross和Pannier等基因是关键的调控因子。Tinman参与最早的心脏前体细胞分化和心脏细胞形成,而Dorsocross和Pannier则影响心脏前体细胞的定向分化和心脏管腔的形成。进入胚胎晚期和幼虫期,果蝇的心管经历进一步的发展和重塑,该过程主要受到转录因子Hand、Mef2以及Hox基因家族的调控。在成虫期, Hox基因家族和Tinman依旧发挥重要作用。虽然果蝇心脏与脊椎动物成熟心脏存在形态上的差异,但两者心脏的早期发育过程以及调控基因和信号通路都有保守性。本文综述了果蝇心脏发育基因调控研究的三十年进展以及利用果蝇模型研究人类心脏相关疾病的潜在希望。  相似文献   

6.
蛋白质组学旨在阐明基因组所表达的真正执行生命活动的全部蛋白质的表达规律和生物功能。随着人类基因组学计划的逐渐成熟,分子水平的实验技术不断发展,蛋白质组学的研究被提高到了前所未有的高度。果蝇是生命科学领域最为常用的一种模式生物,长期的系统研究也使果蝇的基因组成为至今注释最好的基因组之一,为功能基因组研究奠定了基础。但由于技术的限制,迄今有关果蝇蛋白质组学研究的报道尚不多见。近年来果蝇蛋白质组学的研究主要包括表达谱、修饰谱、比较蛋白质组学和疾病模型蛋白质组等四个方向,为进一步开展人类疾病临床蛋白质组学研究奠定了基础。  相似文献   

7.
黄云鹏  周兵 《生命科学》2012,(8):927-938
微量金属参与了生物体许多化学反应过程,同时也可作为蛋白质的辅基或辅因子起作用,对机体生长发育以及正常生物功能的维持具有重要作用;微量金属元素的代谢失衡与生物体许多疾病密切相关,如威尔森氏病、门克斯病、铁色素沉积、肠变性皮炎以及一些神经退行性疾病。黑腹果蝇(Drosophila melanogaster)是遗传背景清楚、生活周期短、操作方便的模式生物,利用果蝇研究金属离子代谢以及金属离子代谢与疾病的联系具有独特的优势,近年来,随着果蝇基因组测序的完成以及许多转基因果蝇株的建立,果蝇也越来越多的用于金属离子代谢的研究。介绍了近年来果蝇在金属离子代谢研究领域的进展,以及其与神经退行性疾病关系研究上的一些应用。  相似文献   

8.
果蝇先天性免疫研究进展   总被引:2,自引:0,他引:2  
曹慧  李宗芸  王秋香 《昆虫知识》2009,46(2):196-202
果蝇是生命科学与人类疾病研究的重要模式生物,虽然不具有人类高度专一的获得性免疫,但也有对病原微生物感染作出快速有效反应的先天性免疫应答系统,主要包括体液免疫,细胞免疫和黑化反应。文章结合国外最新研究,详细介绍果蝇体液免疫中控制抗菌肽合成的Toll信号通路和Imd信号通路中涉及的蛋白及其相互作用,并对果蝇细胞免疫中的吞噬、包埋功能和黑化反应作简要阐述。研究表明,果蝇的Toll和Imd信号通路分别与人类的TLR4和TNRF-1信号通路存在着惊人的相似之处,说明果蝇与人类在免疫调控通路方面可能存在着共同的进化起源。  相似文献   

9.
模拟昆虫视觉-行为抉择的强化学习模型   总被引:1,自引:0,他引:1  
视觉信息用于行为抉择的过程是一个极其复杂的脑信息处理过程,昆虫或动物对外界环境的学习是以价值来控制的,并可影响其行为抉择,研究这一过程对揭示人类自身脑运行机制有重要意义.文章在郭爱克研究小组果蝇实验提供的生物依据基础上,提出了一种模拟果蝇视觉-行为抉择的神经网络模型.该模型引入了价值和基于价值的强化学习算法,应用于输入视觉图像的强化学习,以此建立果蝇脑内多巴胺和蘑菇体对于抉择判断的价值体系.模拟的结果表明,该模型可以模拟果蝇视觉信息的学习和行为抉择过程,其结果与生物实验相符,同时也为机器人视觉信息控制行为抉择的应用提供了基础.  相似文献   

10.
模式生物研究   总被引:7,自引:0,他引:7  
朱作言 《生命科学》2006,18(5):419-419
世界上公认的用于生命科学研究的常见模式生物有酵母、线虫、果蝇、斑马鱼、小鼠、拟南芥等。当今,生命科学及医学的发展,模式生物发挥着重要作用。据统计,刊登在Nature、Science和Cell等重要杂志上的论文中,80%以上有关生命过程和机理的研究都是通过模式生物来进行的。本期《生命科学》以专题的形式,刊登了由国内从事模式生物研究专家撰写的介绍模式生物的文章。作者从不同角度,对不同模式生物在研究工作中的历史轨迹、各自优势、技术手段、热点课题、发展前景,以及对生命现象揭密和人类疾病治疗探索的重大贡献作了系统而又简要的介绍。从中,我们可以具体而又生动地体察到,模式生物在今天生命科学发展中的重要地位和推动生命科学及医学进步的不可替代的巨大潜力。改革开放以来,我国生命科学研究经历了“跟踪”、“接轨”和“融入主流领域”的过程,而用模式生物进行的研究则是主流研究领域的重要组成部分。只有通过在主流研究领域的参与、竞争、创新超越,才能提高我国生命科学研究水平,才能真正对世界生命科学的发展作出重大贡献。作为主流领域的模式生物研究,我国起步很晚,仅局限在很少数的实验室。因此,加强这方面的介绍,对于普及现代生命科学理念,大力推动模式生物研究领域的开展和学术交流,是十分重要和及时的。  相似文献   

11.
Drosophila melanogaster has a long history as a model organism with several unique features that make it an ideal research tool for the study of the relationship between genotype and phenotype. Importantly fundamental genetic principles as well as key human disease genes have been uncovered through the use of Drosophila. The contribution of the fruit fly to science and medicine continues in the postgenomic era as cell-based Drosophila RNAi screens are a cost-effective and scalable enabling technology that can be used to quantify the contribution of different genes to diverse cellular processes. Drosophila high-throughput screens can also be used as integral part of systems-level approaches to describe the architecture and dynamics of cellular networks.  相似文献   

12.
The fruit fly Drosophila melanogaster has become such a popular model organism for studying human disease that it is often described as a little person with wings. This view has been strengthened with the sequencing of the Drosophila genome and the discovery that 60% of human disease genes have homologues in the fruit fly. In this review, I discuss the approach of using Drosophila not only as a model for metazoans in general but as a model insect in particular. Specifically, I discuss recent work on the use of Drosophila to study the transmission of disease by insect vectors and to investigate insecticide function and development.  相似文献   

13.
The fruit fly, Drosophila melanogaster, is a powerful model genetic organism that has been used since the turn of the previous century in the study of complex biological problems. In the last decade, numerous researchers have focused their attention on understanding neurodegenerative diseases by utilizing this model system. Numerous Drosophila mutants have been isolated that profoundly affect neural viability and integrity of the nervous system with age. Additionally, many transgenic strains have been developed as models of human disease conditions. We review the existing Drosophila neurodegenerative mutants and transgenic disease models, and discuss the role of the fruit fly in therapeutic development for neurodegenerative diseases.  相似文献   

14.
The fruit fly Drosophila melanogaster has been successfully used to study numerous biological processes including immune response. Flies are naturally infected with more than twenty RNA viruses making it a valid model organism to study host-pathogen interactions during viral infections. The Drosophila antiviral immunity includes RNA interference, activation of the JAK/STAT and other signaling cascades and other mechanisms such as autophagy and interactions with other microorganisms. Here we review Drosophila as an immunological research model as well as recent advances in the field of Drosophila antiviral immunity.  相似文献   

15.
Prigent SR  Rajpurohit S 《Fly》2007,1(5):297-302
A century ago a little fly with red eyes was first used for genetic studies. That insignificant fly, called at that time Drosophila ampelophila, revolutionized biology while becoming the model we know today under the name of Drosophila melanogaster. Since then its study has never ceased, but the field of interest has somewhat changed during the century. To caricature a little, today we essentially learn from Drosophila meetings that the fly has a brain! It is true that the fly is a tremendous model organism for neurobiology. But this fly is, in fact, an appropriate and recognized model for the whole of biology. Indeed, Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds together. There we not only learn about the latest improvements in our field of interest, but surely appreciate learning another bit of biology. From this biological melting pot has emerged a culture very specific to the fly community. Thus besides neurobiology, cell biology and development, a diversity of other research fields exist; they all have their own place in the cultural and historical dimension of the "drosophila" model. Several communications from those diverse research fields were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and are briefly covered here. We believe it more judicious to call the model "drosophila" without a capital initial, as the model has never really been limited to only the Drosophila genus. The vernacular name "drosophila" is currently used to designate any fly of the Drosophilidae family and we believe the term more appropriate than "small fruit fly" or "vinegar fly" to better include the species and ecological diversity of the model.  相似文献   

16.
Drosophila melanogaster is a widely used model organism for research on innate immunity and serves as an experimental model for infectious diseases. The aetiological agent of the zoonotic disease tularaemia, Francisella tularensis, can be transmitted by ticks and mosquitoes and Drosophila might be a useful, genetically amenable model host to elucidate the interactions between the bacterium and its arthropod vectors. We found that the live vaccine strain of F. tularensis was phagocytosed by Drosophila and multiplied in fly haemocytes in vitro and in vivo. Bacteria injected into flies resided both inside haemocytes and extracellularly in the open circulatory system. A continuous activation of the humoral immune response, i.e. production of antimicrobial peptides under control of the imd/Relish signalling pathway, was observed and it may have contributed to the relative resistance to F. tularensis as flies defective in the imd/Relish pathway died rapidly. Importantly, bacterial strains deficient for genes of the F. tularensis intracellular growth locus or the macrophage growth locus were attenuated in D. melanogaster. Our results demonstrate that D. melanogaster is a suitable model for the analysis of interactions between F. tularensis and its arthropod hosts and that it can also be used to identify F. tularensis virulence factors relevant for mammalian hosts.  相似文献   

17.
Studies in cell-culture systems and in postmortem tissue from human disease have suggested a connection between cell-cycle activation and neurodegeneration. The fruit fly Drosophila melanogaster has recently emerged as a powerful model system in which to model neurodegenerative diseases. Here we review work in the fly that has begun to address some of the important questions regarding the relationship between cell-cycle activation and neurodegeneration in vivo, including recent data implicating cell-cycle activation as a downstream effector of tau-induced neurodegeneration. We suggest how powerful research tools in Drosophila might be utilized to approach fundamental questions that remain.  相似文献   

18.
The discovery of the period gene mutants in 1971 provided the first evidence that daily rhythms in the sleep-wake cycle of a multicellular organism, the fruit fly Drosophila melanogaster, had an underlying genetic basis. Subsequent research has established that the biological clock mechanism in flies and mammals is strikingly similar and functions as a bimodal switch, simultaneously turning on one set of genes and turning off another set and then reversing the process every 12 h. In this chapter, the current model of the clock mechanism in Drosophila will be presented. This relatively basic model will then be used to outline the general rules that govern how the biological clock operates in mammals.  相似文献   

19.
《遗传学报》2011,38(1)
Invasion and metastasis are the most deadly hallmarks of cancer.Once a cancer has acquired the ability to colonize new sites in the body it becomes dramatically more difficult to treat.This has made it a focus of much of cancer research.The humble fruit fly,Drosophila melanogaster,has despite its relative simplicity,made significant contributions to the understanding of tumor progression.In this review we outline and highlight those with an emphasis on modeling the genetic and epigenetic changes required for invasion and metastasis.We will revisit the early years of cancer modeling in Drosophila where the first parallels were drawn between Drosophila and vertebrate neoplasms and highlight recent advances using genetic screens and interactions with the epithelial microenvironment and innate immune system.We focus on the power and limitations of current fly models of metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号