首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological concentrations of [Arg(8)]vasopressin (AVP; 10-500 pM) stimulate oscillations of cytosolic free Ca2+ concentration (Ca2+ spikes) in A7r5 vascular smooth muscle cells. We previously reported that this effect of AVP was blocked by a putative phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (5 microM). In the present study, the products of PLA2, arachidonic acid (AA), and lysophospholipids were found to be ineffective in stimulating Ca2+ spiking, and inhibitors of AA metabolism did not prevent AVP-stimulated Ca2+ spiking. Thin layer chromatography was used to monitor the release of AA and phosphatidic acid (PA), which are the products of PLA2 and phospholipase D (PLD), respectively. AVP (100 pM) stimulated both AA and PA formation, but only PA formation was inhibited by ONO-RS-082 (5 microM). Exogenous PLD (type VII; 2.5 U/ml) stimulated Ca2+ spiking equivalent to the effect of 100 pM AVP. AVP stimulated transphosphatidylation of 1-butanol (a PLD-catalyzed reaction) but not 2-butanol, and 1-butanol (but not 2-butanol) completely prevented AVP-stimulated Ca2+ spiking. Protein kinase C (PKC) inhibition, which completely prevents AVP-stimulated Ca2+ spiking, did not inhibit AVP-stimulated phosphatidylbutanol formation. These results suggest that AVP-stimulated Ca2+ spiking depends on activation of PLD rather than PLA2 and that PKC activation may be downstream of PLD in the signaling cascade.  相似文献   

2.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

3.
Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [14C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10(-6)M AVP [14C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10(-11)-10(-6)M). No change in labelling of other phospholipids and diacylglycerol could be detected. The V1 antagonist dPTyr(Me)AVP inhibited in a dose-dependent manner the AVP-stimulated accumulation of PA. The V2 agonist dPVDAVP was without effect. The present results suggest that AVP binds to V1 receptors in rat Leydig cells resulting in stimulation of PA turnover. We suggest that the AVP-stimulated PA formation is an indication of phosphoinositide turnover.  相似文献   

4.
The signal transduction pathway linking physiological concentrations of [Arg(8)]vasopressin (AVP) to an increase in frequency of Ca(2+) spiking was examined in confluent cultures of A7r5 vascular smooth muscle cells. Immunoprecipitation/Western blot studies revealed a robust increase in tyrosine phosphorylation of the non-receptor tyrosine kinase, PYK2, in A7r5 cells treated with 4beta-phorbol 12-myristate 13-acetate or ionomycin. 100 pm AVP also induced PYK2 tyrosine phosphorylation, and this effect was inhibited by protein kinase C inhibitors Ro-31-8220 (1-10 microm) or chelerythrine chloride (1-20 microm). In fura-2-loaded A7r5 cells, the stimulation of Ca(2+) spiking by 100 pm AVP or 1 nm 4beta-phorbol 12-myristate 13-acetate was completely blocked by PP2 (10 microm, a Src family kinase inhibitor). Salicylate (20 mm, recently identified as a PYK2 inhibitor) and the tyrosine kinase inhibitor, tyrphostin A47 (50 microm), but not its inactive analog, tyrphostin A63, also blocked AVP-stimulated Ca(2+) spiking. PYK2 phosphorylation was inhibited by both PP2 and salicylate, whereas tyrphostin A47 failed to inhibit PYK2 tyrosine phosphorylation. ERK1/2 kinases did not appear to be involved because 1) 100 pm AVP did not appreciably increase ERK1/2 phosphorylation and U-0126 (2.5 microm) did not inhibit AVP-stimulated Ca(2+) spiking; and 2) epidermal growth factor (10 nm) robustly stimulated ERK1/2 phosphorylation but did not induce Ca(2+) spiking. Delayed rectifier K(+) channels may mediate the PYK2 activity because Kv1.2 channel protein co-immunoprecipitated with PYK2 and tyrosine phosphorylation of Kv1.2 was stimulated by AVP and inhibited by Ro-31-8220, PP2, and salicylate but not tyrphostin A47. Our findings are consistent with a role for PYK2 and phosphorylation of K(+) channels in the stimulation of Ca(2+) spiking by physiological concentrations of AVP.  相似文献   

5.
Ovine corticotropin releasing factor (oCRF-41) and AVP act synergistically to stimulate pituitary ACTH secretion. In the present study we have investigated whether the effect of AVP, either in the presence or in the absence of oCRF-41 (0.5 nmol/l), could be blocked by V1 (pressor)-antagonists. Furthermore, oxytocin, and [1-deamino,8-D-arginine] vasopressin (dDAVP) were tested for their ability to release ACTH. All experiments were carried out in vitro, using segments of rat anterior pituitary glands. The V1-antagonist [1-deamino,penicillamine(o-methyl-tyrosine)]AVP inhibited ACTH release induced by AVP or AVP + oCRF-41. However, it also had some agonistic activity which was more pronounced in the presence of oCRF-41. An equally potent V1-antagonist, [1-beta-mercapto-beta, beta-cyclopentamethyleneproprionic acid (o-methyl-tyrosine)]AVP, failed to inhibit AVP-stimulated ACTH secretion, and also had weak agonist potency. The relatively selective V2 (antidiuretic)-agonist dDAVP was 20-30 fold less potent than AVP. Oxytocin, a weak V1- and V2-agonist was only 4-8 fold less potent than AVP. These data are compatible with the suggestion that AVP receptors on pituitary corticotrope cells are neither classical V1- nor V2-receptors.  相似文献   

6.
Administration of arginine vasopressin (AVP) time-dependently induced the phosphorylation of heat shock protein 27 (HSP27) at Ser-15 and Ser-85 in smooth muscle of aorta in vivo. The AVP-induced phosphorylation of HSP27 at Ser-15 and Ser-85 was inhibited by a V1a receptor antagonist but not by a V2 receptor antagonist. In cultured aortic smooth muscle A10 cells, AVP markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85. The AVP-induced phosphorylation of HSP27 was attenuated by SB203580 and PD169316, inhibitors of p38 mitogen-activated protein (MAP) kinase, but not by PD98059, a MEK inhibitor. These results strongly suggest that AVP phosphorylates HSP27 via p38 MAP kinase in aortic smooth muscle cells.  相似文献   

7.
Kir6.1/SUR2B channel is the major isoform of K(ATP) channels in the vascular smooth muscle. Genetic disruption of either subunit leads to dysregulation of vascular tone and regional blood flows. To test the hypothesis that the Kir6.1/SUR2B channel is a target molecule of arginine vasopressin (AVP), we performed studies on the cloned Kir6.1/SUR2B channel and cell-endogenous K(ATP) channel in rat mesenteric arteries. The Kir6.1/SUR2B channel was expressed together with V1a receptor in the HEK-293 cell line. Whole cell currents of the transfected HEK cells were activated by K(ATP) channel opener pinacidil and inhibited by K(ATP) channel inhibitor glibenclamide. AVP produced a concentration-dependent inhibition of the pinacidil-activated currents with IC(50) 2.0 nM. The current inhibition was mediated by a suppression of the open-state probability without effect on single-channel conductance. An exposure to 100 nM PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect of AVP. In acutely dissociated vascular smooth myocytes, AVP strongly inhibited the cell-endogenous K(ATP) channel. In isolated mesenteric artery rings, AVP produced concentration-dependent vasoconstrictions with EC(50) 6.5 nM. At the maximum effect, pinacidil completely relaxed vasoconstriction in the continuing exposure to AVP. The magnitude of the AVP-induced vasoconstriction was significantly reduced by calphostin-C. These results therefore indicate that the Kir6.1/SUR2B channel is a target molecule of AVP, and the channel inhibition involves G(q)-coupled V1a receptor and PKC.  相似文献   

8.
Arginine vasopressin (AVP) has been shown to directly induce neonatal rat cardiac fibroblasts (CFs) proliferation, a major component involved in cardiac hypertrophy. Herein, we explored whether AVP is also a growth factor for adult rat CFs and, if so, whether the growth effect could be inhibited by simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. AVP significantly increased DNA synthesis in adult rat CFs by 73.5 +/- 5.1% (P < or = 0.05), an effect inhibited by V1 receptor antagonist, d(CH(2))(5)[Tyr(2)(Me), Arg(8)]-vasopressin. AVP also activated extracellular signal-regulated kinase 1/2 (ERK1/2) as assessed by MBP phosphotransferase activity (5.1 +/- 0.6 fold over basal level, P < or = 0.05) and Western blot analysis, and effects were mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), but abolished by inhibiting cellular PKC through chronic PMA incubation. In addition, AVP induced PKC activation (27.2 +/- 3.8% from a basal value of 9.3 +/- 0.7%, P < or = 0.05). AVP-induced increase in DNA synthesis could be attenuated by the specific inhibitors of ERK1/2 (PD98059), PI3K (LY294002), and AKT (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, HIMO). Simvastatin inhibited the effects of AVP on DNA synthesis, ERK1/2, and PKC activation in a dose-dependent manner. Phosphatidylinositol-3-kinase (PI3K)-dependent AKT activation induced by AVP was also inhibited by simvastatin. The effects of simvastatin on ERK1/2, PKC, and AKT activation and DNA synthesis could be reversed by mevalonate. These results support a growth-inducing effect of AVP on adult rat CFs through ERK and AKT signalings and the growth effect could be attenuated by simvastatin via inhibiting these two pathways.  相似文献   

9.
Arginine-vasopressin (AVP) elicits a variety of responses in cultured rat mesangial cells, among them stimulation of prostaglandin biosynthesis and activation of Cl- channels. AVP produced an 11-fold increase over basal levels in prostaglandin E2 release from cultured mesangial cells. This response was completely inhibited by 25 microM indomethacin and 82 +/- 5% inhibited by 25 microM 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) which is a potent blocker of epithelial Cl- channels. The IC50 for NPPB inhibition of prostaglandin E2 release was 8 microM. Indomethacin and NPPB at 25 microM also inhibited AVP-stimulated cellular accumulation of prostaglandin E2 by 98% and 79 +/- 7% respectively. The inhibitory effect of NPPB was not due to interference with the cellular response to AVP since at 50 microM it did not block AVP-stimulated release of arachidonate metabolites from cells metabolically labeled with [3H]-arachidonic acid. It is suggested that NPPB inhibition of prostaglandin E2 synthesis is at the cyclooxygenase level on the basis of its structural similarity to the fenamic acid type of cyclooxygenase inhibitors.  相似文献   

10.
Protein tyrosine phosphorylation has not been considered to be important for cellular activation by phospholipase C-linked vasoactive peptides. We found that endothelin, angiotensin II, and vasopressin (AVP), peptides that signal via phospholipase C activation, rapidly enhanced tyrosine phosphorylation of proteins of approximate molecular mass 225, 190, 135, 120, and 70 kDa in rat renal mesangial cells. The phosphorylated proteins were cytosolic or membrane-associated, and none were integral to the membrane, suggesting that the peptide receptors are not phosphorylated on tyrosine. Epidermal growth factor (EGF), which does not activate phospholipase C in these cells, induced the tyrosine phosphorylation of its own 175-kDa receptor, in addition to five proteins of identical molecular mass to those phosphorylated in response to endothelin, AVP, and angiotensin II. This suggests that in mesangial cells there is a common signaling pathway for phospholipase C-coupled agonists and agonists classically assumed to signal via receptor tyrosine kinase pathways, such as EGF. The phorbol ester, phorbol 12-myristate 13-acetate, and the synthetic diacylglycerol, oleoyl acetylglycerol, stimulated the tyrosine phosphorylation of proteins identical to those phosphorylated by the phospholipase C-linked peptides, suggesting that protein kinase C (PKC) activation is sufficient to active tyrosine phosphorylation. However, the PKC inhibitor, staurosporine, and down-regulation of PKC activity by prolonged exposure to phorbol esters completely inhibited tyrosine phosphorylation in response to PMA but not to endothelin, AVP, or EGF. In conclusion, endothelin, angiotensin II, and AVP enhances protein tyrosine phosphorylation via at least two pathways, PKC-dependent and PKC-independent. Although activation of PKC may be sufficient to enhance protein tyrosine phosphorylation, PKC is not necessary and may not be the primary route by which these agents act. At least one of these pathways is shared with the growth factor EGF, suggesting not only common intermediates in the signaling pathways for growth factors and vasoactive peptides but also perhaps common cellular tyrosine kinases which phosphorylate these intermediates.  相似文献   

11.
The role of protein kinase C (PKC) in tyrosine phosphorylation of the N‐methyl‐d ‐aspartate receptor (NMDAR) following transient cerebral ischemia was investigated. Transient (15 min) cerebral ischemia was produced in adult rats by four‐vessel occlusion and animals allowed to recover for 15 or 45 min. Following ischemia, tyrosine phosphorylation of NR2A and NR2B and activated Src‐family kinases (SFKs) and Pyk2 were increased in post‐synaptic densities (PSDs). Phosphorylation of NR2B on Y1472 by PSDs isolated from post‐ischemic forebrains was inhibited by the SFK specific inhibitor PP2, and by the PKC inhibitors GF109203X (GF), Gö6976 and calphostin C. Intravenous injection of GF immediately following the ischemic challenge resulted in decreased phosphorylation of NR1 on PKC phosphorylation sites and reduced ischemia‐induced increases in tyrosine phosphorylation of NR2A and NR2B without affecting the increase in total tyrosine phosphorylation of hippocampal proteins. Ischemia‐induced increases in activated Pyk2 and SFKs in PSDs, but not the translocation of PKC, Pyk2 or Src to the PSD, were also inhibited by GF. The inactive homologue of GF, bisindolylmaleimide V, had no effect on these parameters. The results are consistent with a role for PKC in the ischemia‐induced increase in tyrosine phosphorylation of the NMDAR, via a pathway involving Pyk2 and Src‐family kinases.  相似文献   

12.
Selectivity of protein kinase inhibitors in human intact platelets   总被引:1,自引:0,他引:1  
The specificity of commonly used protein kinase inhibitors has been evaluated in the intact human platelet. Protein kinase C (PKC) and cyclic AMP-dependent protein kinase (PKA) were activated selectively by treating platelets with phorbol dibutyrate (PDBu) or prostacyclin (PGl2). PKC activity was quantitated by measuring PDBu-specific phosphorylation of a 47,000 molecular weight protein, and PKA activity monitored by measuring prostacyclin-dependent phosphorylation of a 22,000 molecular weight protein. Staurosporine and 1-(5-isoquinolinylsulphonyl)-2-methyl-piperazine (H-7) were found to be non-specific inhibitors in the intact platelet, consistent with their effects on the isolated enzymes. Tamoxifen inhibited PKC activity (IC50 = 80 microM) but increased PKA-dependent protein phosphorylation. These results support the use of human platelets for measuring the specificity of protein kinase inhibitors and indicate that tamoxifen might have value for experimental purposes as a relatively selective PKC inhibitor.  相似文献   

13.
The mechanism of Ca2+ influx stimulated by arginine vasopressin (AVP) was studied in cultured rat smooth muscle cells. AVP stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel. NaF, a GTP-binding protein activator, mimicked the AVP-stimulated 45Ca2+ influx. The 45Ca2+ influx stimulated by a combination of AVP and NaF was not additive. The affinity of AVP receptor was decreased by guanosine 5'-O-(3-thiotriphosphate). Pertussis toxin failed to affect the AVP-stimulated 45Ca2+ influx. AVP did not stimulate cAMP production, but increased inositol trisphosphate generation. Both AVP-stimulated 45Ca2+ influx and inositol trisphosphate generation were inhibited by neomycin, a phospholipase C inhibitor, in a dose-dependent manner, and the patterns of both inhibitions were similar. These results suggest that, in rat smooth muscle cells, AVP-stimulated Ca2+ influx is mediated exclusively through phosphoinositide hydrolysis.  相似文献   

14.
Stimulation of vasopressin (V1) receptors of rat aortic smooth muscle cells (A-10, ATCC CRL 1476) results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) with the mobilization of intracellular calcium. When A-10 cells are exposed to arginine vasopressin (AVP), there is an increase in the level of c-fos oncoprotein. The extent of induction of c-fos oncoprotein depends on both the time of exposure of the cells to AVP, reaching a maximum at 60 min after which there is a slow decline, and the concentration of AVP used, with an approximate EC50 of 1 nM which corresponds well with the Kd of vasopressin binding to these receptors. This vasopressin-mediated increase in c-fos protein level is inhibited by a V1/V2 antagonist (SKF 101498) suggesting that this is a receptor-mediated event. In addition dDAVP, a V2 selective agonist, is much less effective than AVP in inducing c-fos protein suggesting that AVP mediates its effect via V1 receptors. Desensitization of vasopressin receptors by prolonged exposure to AVP resulted in no additional induction of c-fos protein level in response to second challenge of AVP. In addition to AVP, phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC), also stimulates the accumulation of c-fos protein although to a lesser extent than AVP. The above data suggest that c-fos protein levels in smooth muscle cells are regulated by AVP and the hormonal effect may be mediated through PI turnover and DAG, IP3 and Ca2+ signals.  相似文献   

15.
To clarify the requirement of the association of substrate proteins with phospholipid membranes for phosphorylation by protein kinase C (PKC), we studied the relationship between membrane association of PKC-substrate proteins and their phosphorylation by PKC. In the presence of phosphatidylserine, 12-O-tetradecanoylphorbol-13-acetate induced PKC autophosphorylation in either the presence or the absence of Ca2+, and this phosphorylation was not inhibited by increasing salt concentration (up to 200 mM NaCl). Thus, Ca2+ and ionic strength did not markedly affect the enzymatic activity of PKC. Annexin I required Ca2+ for both its association with phospholipid membranes and phosphorylation by PKC, whereas histone and monomyristilated lysozyme (C14:0-lysozyme) did not. This result indicates that the membrane association of substrates closely correlates with their phosphorylation by PKC. Similar correlation was also observed in the effects of ionic strength on the membrane association of the substrates and their phosphorylation by PKC; increased ionic strength (200 mM NaCl) remarkably inhibited both the membrane association and the phosphorylation of histone and annexin I by PKC but C14:0-lysozyme was not markedly affected. These results suggest that the membrane association of PKC-substrate proteins is a prerequisite for their phosphorylation by PKC. This concept further conforms to the mechanisms of PKC inhibitors; some types of PKC inhibitors are mediated all or in part through inhibition of the substrate-membrane interaction.  相似文献   

16.
Arginine vasopressin (AVP) increases water permeability in the collecting duct of the nephron via activation of adenylyl cyclase. Alpha-2 (alpha2) agonists inhibit AVP-stimulated water permeability via binding to alpha2 adrenoceptors that have been divided into 3 subtypes- alpha2A, alpha2B, and alpha2C. Some biological effects mediated by alpha2 agonists result from nonadrenergic imidazoline receptors that exist in the rat kidney. Thus, alpha2-inhibition of AVP-stimulated water permeability in the rat collecting duct could be caused by imidazoline receptors. The purpose of this study was to test agonists and antagonists selective for alpha2 and imidazoline receptors on AVP-stimulated water permeability in the rat inner medullary collecting duct (IMCD). Some experiments were conducted where water permeability was stimulated by a nonhydrolyzable analog of adenosine 3', 5'-cyclic monophosphate (cAMP). Agonists included dexmedetomidine, clonidine, oxymetazoline, agmatine and rilmenidine. The latter two are selective imidazoline agonists. Antagonists included yohimbine, RX821002, atipamezole, prazosin, WB4101, idazoxan, and BU239. Prazosin and WB4101 demonstrate selectivity for the alpha2B and alpha2C subtypes, respectively, and oxymetazoline and RX821002 are selective for the alpha2A subtype. BU239 is selective for imidazoline receptors. Wistar rat terminal IMCDs were isolated and perfused to determine the osmotic water permeability coefficient (Pf). All agonists except agmatine inhibited AVP-stimulated Pf. Inhibition by rilmenidine indicated a different mechanism of action from other agonists. Dose-response data show dexmedetomidine to be the most potent inhibitor. Oxymetazoline and clonidine inhibited cAMP-stimulated Pf indicating that the mechanism involves postcAMP cellular events. It was reported previously that dexmedetomidine inhibits cAMP-stimulated Pf (1). All antagonists except prazosin and WB4101 reversed alpha2-inhibition of AVP-stimulated Pf. BU239 was effective at 1 microM but not at 100 nM. Results suggest that alpha2A adrenoceptors modulate water permeability in the IMCD. The involvement of imidazoline receptors is inconclusive.  相似文献   

17.
In this study, we establish that the V1a vasopressin receptor (V1aR) is palmitoylated, and we show that this modification has an important functional role. Palmitoylation of the V1aR occurs within the Cys371/Cys372 couplet located in the proximal C-terminal tail domain. Substitution of these residues in a [C371G/C372G]V1aR construct effectively disrupted receptor palmitoylation. Our data also indicate an additional palmitoylation site at another locus in the receptor, as yet undefined. [3H]Palmitate incorporation was agonist-sensitive and increased following exposure to [Arg8]vasopressin (AVP). Given the hydrophobic nature of the acyl chain, palmitoylation of the C terminus of G-protein-coupled receptors has been proposed to form an additional intracellular loop. Consequently, palmitoylation/depalmitoylation will have a profound effect on the local conformation of this domain. The V1aR palmitoylation status regulated both phosphorylation and sequestration of the receptor, and furthermore, palmitoylation, phosphorylation, and sequestration were all regulated by AVP. The palmitoylation-defective construct [C371G/C372G]V1aR exhibited decreased phosphorylation compared to wild-type V1aR, under both basal and AVP-stimulated conditions, and was sequestered at a faster rate. In contrast, the binding of four different classes of ligand and intracellular signaling were not affected by palmitoylation. This study therefore establishes that there are different conformational requirements for signaling, agonist-induced phosphorylation, and sequestration of the V1aR.  相似文献   

18.
Examination of the structure of [Arg(8)]-vasopressin receptors (AVPRs) and oxytocin receptors (OTRs) suggests that G protein-coupled receptor kinases (GRKs) and protein kinase C (PKC) are involved in their signal transduction. To explore the physical association of AVPRs and OTRs with GRKs and PKC, wild types and mutated forms of these receptor subtypes were stably expressed as green fluorescent protein fusion proteins and analyzed by fluorescence, immunoprecipitation, and immunoblotting. Addition of a C-terminal GFP tag did not interfere with ligand binding, internalization, and signal transduction. After agonist stimulation, PKC dissociated from the V(1)R, did not associate with the V(2)R, but associated with the V(3)R and the OTR. After AVP stimulation, only GRK5 briefly associated with AVPRs following a time course that varied with the receptor subtype. No GRK associated with the OTR. Exchanging the V(1)R and V(2)R C termini altered the time course of PKC and GRK5 association. Deletion of the V(1)R C terminus resulted in no PKC association and a ligand-independent sustained association of GRK5 with the receptor. Deletion of the GRK motif prevented association and reduced receptor phosphorylation. Thus, agonist stimulation of AVP/OT receptors leads to receptor subtype-specific interactions with GRK and PKC through specific motifs present in the C termini of the receptors.  相似文献   

19.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

20.
Prostate cancer PC3 cells expressed constitutive protein kinase C (PKC) activity that under basal conditions suppressed neurotensin (NT) receptor function. The endogenous PKC activity, assessed using a cell-based PKC substrate phosphorylation assay, was diminished by PKC inhibitors and enhanced by phorbol myristic acid (PMA). Accordingly, PKC inhibitors (staurosporine, Go-6976, Go-6983, Ro-318220, BIS-1, chelerythrine, rottlerin, quercetin) enhanced NT receptor binding and NT-induced inositol phosphate (IP) formation. In contrast, PMA inhibited these functions. The cells expressed conventional PKCs (, βI) and novel PKCs (δ, ε), and the effects of PKC inhibitors on NT binding were blocked by PKC downregulation. The inhibition of NT binding by PMA was enhanced by okadaic acid and blocked by PKC inhibitors. However, when some PKC inhibitors (rottlerin, BIS-1, Ro-318220, Go-69830, quercetin) were used at higher concentrations (> 2 μM), they had a different effect characterized by a dramatic increase in NT binding and an inhibition of NT-induced IP formation. The specificity of the agents implicated novel PKCs in this response and indeed, the inhibition of NT-induced IP formation was reproduced by PKCδ or PKCε knockdown. The inhibition of IP formation appeared to be specific to NT since it was not observed in response to bombesin. Scatchard analyses indicated that the PKC-directed agents modulated NT receptor affinity, not receptor number or receptor internalization. These findings suggest that PKC participates in heterologous regulation of NT receptor function by two mechanisms: a) — conventional PKCs inhibit NT receptor binding and signaling; and b) — novel PKCs maintain the ability of NT to stimulate PLC. Since NT can activate PKC upon binding to its receptor, it is possible that NT receptor is also subject to homologous regulation by PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号