首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.1,2 Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.Key words: SARS coronavirus, monoclonal antibody, neutralizing, epitope, immunochemistry  相似文献   

2.
In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein. We identified several amino acid substitutions, including Y442F and V601G in the S1 domain and D757N and A834V in the S2 region. In the presence of each neutralizing antibody, double mutants with substitutions in both domains exhibited a greater growth advantage than those with only one substitution. Importantly, combining two monoclonal antibodies that target different epitopes effected almost complete suppression of wild type virus replication. Thus, for effective passive immunotherapy, it is important to use neutralizing antibodies that recognize both the S1 and S2 regions.  相似文献   

3.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.  相似文献   

4.
Marasco WA  Sui J 《Nature biotechnology》2007,25(12):1421-1434
Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.  相似文献   

5.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a protective Ag for vaccine design. We previously demonstrated that the receptor-binding domain (RBD) of S protein contains multiple conformational epitopes (Conf I-VI) that confer the major target of neutralizing Abs. Here we show that the recombinant RBDs derived from the S protein sequences of Tor2, GD03, and SZ3, the representative strains of human 2002-2003 and 2003-2004 SARS-CoV and palm civet SARS-CoV, respectively, induce in the immunized mice and rabbits high titers of cross-neutralizing Abs against pseudoviruses expressing S proteins of Tor2, GD03, and SZ3. We also demonstrate that the Tor2-RBD induced-Conf I-VI mAbs can potently neutralize both human SARS-CoV strains, Tor2 and GD03. However, only the Conf IV-VI, but not Conf I-III mAbs, neutralize civet SARS-CoV strain SZ3. All these mAbs reacted significantly with each of the three RBD variants (Tor2-RBD, GD03-RBD, and SZ3-RBD) that differ at several amino acids. Regardless, the Conf I-IV and VI epitopes were completely disrupted by single-point mutation of the conserved residues in the RBD (e.g., D429A, R441A, or D454A) and the Conf III epitope was significantly affected by E452A or D463A substitution. Interestingly, the Conf V epitope, which may overlap the receptor-binding motif and induce most potent neutralizing Abs, was conserved in these mutants. These data suggest that the major neutralizing epitopes of SARS-CoV have been apparently maintained during cross-species transmission, and that RBD-based vaccines may induce broad protection against both human and animal SARS-CoV variants.  相似文献   

6.
Ren W  Qu X  Li W  Han Z  Yu M  Zhou P  Zhang SY  Wang LF  Deng H  Shi Z 《Journal of virology》2008,82(4):1899-1907
Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.  相似文献   

7.
Summary The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.  相似文献   

8.
The spike (S) protein of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is a major antigenic determinant capable of inducing protective immunity. Recently, a small fragment on the SARS-CoV S protein (residues 318-510) was characterized as a minimal receptor-binding domain (RBD), which mediates virus binding to angiotensin-converting enzyme 2, the functional receptor on susceptible cells. In this study, we demonstrated that a fusion protein containing RBD linked to human IgG1 Fc fragment (designated RBD-Fc) induced high titer of RBD-specific Abs in the immunized mice. The mouse antisera effectively neutralized infection by both SARS-CoV and SARS pseudovirus with mean 50% neutralization titers of 1/15,360 and 1/24,737, respectively. The neutralization determinants on the RBD of S protein were characterized by a panel of 27 mAbs isolated from the immunized mice. Six groups of conformation-dependent epitopes, designated as Conf I-VI, and two adjacent linear epitopes were identified by ELISA and binding competition assays. The Conf IV and Conf V mAbs significantly blocked RBD-Fc binding to angiotensin-converting enzyme 2, suggesting that their epitopes overlap with the receptor-binding sites in the S protein. Most of the mAbs (23 of 25) that recognized the conformational epitopes possessed potent neutralizing activities against SARS pseudovirus with 50% neutralizing dose ranging from 0.005 to 6.569 microg/ml. Therefore, the RBD of SARS S protein contains multiple conformational epitopes capable of inducing potent neutralizing Ab responses, and is an important target site for developing vaccines and immunotherapeutics.  相似文献   

9.
Yi CE  Ba L  Zhang L  Ho DD  Chen Z 《Journal of virology》2005,79(18):11638-11646
Neutralizing antibodies (NAbs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) spike (S) glycoprotein confer protection to animals experimentally infected with the pathogenic virus. We and others previously demonstrated that a major mechanism for neutralizing SARS-CoV was through blocking the interaction between the S glycoprotein and the cellular receptor angiotensin-converting enzyme 2 (ACE2). In this study, we used in vivo electroporation DNA immunization and a pseudovirus-based assay to functionally evaluate immunogenicity and viral entry. We characterized the neutralization and viral entry determinants within the ACE2-binding domain of the S glycoprotein. The deletion of a positively charged region Sdelta(422-463) abolished the capacity of the S glycoprotein to induce NAbs in mice vaccinated by in vivo DNA electroporation. Moreover, the Sdelta(422-463) pseudovirus was unable to infect HEK293T-ACE2 cells. To determine the specific residues that contribute to related phenotypes, we replaced eight basic amino acids with alanine. We found that a single amino acid substitution (R441A) in the full-length S DNA vaccine failed to induce NAbs and abolished viral entry when pseudoviruses were generated. However, another substitution (R453A) abolished viral entry while retaining the capacity for inducing NAbs. The difference between R441A and R453A suggests that the determinants for immunogenicity and viral entry may not be identical. Our findings provide direct evidence that these basic residues are essential for immunogenicity of the major neutralizing domain and for viral entry. Our data have implications for the rational design of vaccine and antiviral agents as well as for understanding viral tropism.  相似文献   

10.
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.  相似文献   

11.

Background

Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control.

Methodology/Principal Findings

We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials.

Conclusions/Significance

We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans.  相似文献   

12.
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production.  相似文献   

13.
Approximately 1% of those infected with HIV-1 develop broad and potent serum cross-neutralizing antibody activities. It is unknown whether or not the development of such immune responses affects the replication of the contemporaneous autologous virus. Here, we defined a pathway of autologous viral escape from contemporaneous potent and broad serum neutralizing antibodies developed by an elite HIV-1-positive (HIV-1+) neutralizer. These antibodies potently neutralize diverse isolates from different clades and target primarily the CD4-binding site (CD4-BS) of the viral envelope glycoprotein. Viral escape required mutations in the viral envelope glycoprotein which limited the accessibility of the CD4-binding site to the autologous broadly neutralizing anti-CD4-BS antibodies but which allowed the virus to infect cells by utilizing CD4 receptors on their surface. The acquisition of neutralization resistance, however, resulted in reduced cell entry potential and slower viral replication kinetics. Our results indicate that in vivo escape from autologous broadly neutralizing antibodies exacts fitness costs to HIV-1.  相似文献   

14.
Six mouse monoclonal antibodies (mAbs) specific to salmon pancreas disease virus (SPDV) were produced following immunisation with purified virus preparations. These mAbs and 2 mAbs resulting from an earlier investigation were characterised. None of the mAbs possessed virus neutralising activity but all reacted with 4 geographically different SPDV isolates as determined by indirect immunofluorescence. Three mAbs produced positive immunostaining with Western blots of SPDV proteins. The 4H1 mAb reacted with the 53 kDa structural E1 glycoprotein present in virus-infected cells and in gradient-purified virus. Two mAbs, 5A5 and 7B2, which exhibited unusual immunofluorescence staining of the nuclear margin, reacted with a 35 kDa protein, which is present in gradient-purified virus and which is considered to be the capsid protein. A sandwich ELISA, based on the use of mAb 2D9 for capture and a biotinylated conjugate of mAb 7A2 for detection, detected SPDV antigen in virus-infected Chinook salmon embryo-214 cells and gradient-purified virus. These mAbs may be of use in pathogenesis studies and in diagnostic test development.  相似文献   

15.
The distribution of the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor, an angiotensin-converting enzyme 2 (ACE2), does not strictly correlate with SARS-CoV cell tropism in lungs; therefore, other cellular factors have been predicted to be required for activation of virus infection. In the present study, we identified transmembrane protease serine 2 (TMPRSS2), whose expression does correlate with SARS-CoV infection in the upper lobe of the lung. In Vero cells expressing TMPRSS2, large syncytia were induced by SARS-CoV infection. Further, the lysosome-tropic reagents failed to inhibit, whereas the heptad repeat peptide efficiently inhibited viral entry into cells, suggesting that TMPRSS2 affects the S protein at the cell surface and induces virus-plasma membrane fusion. On the other hand, production of virus in TMPRSS2-expressing cells did not result in S-protein cleavage or increased infectivity of the resulting virus. Thus, TMPRSS2 affects the entry of virus but not other phases of virus replication. We hypothesized that the spatial orientation of TMPRSS2 vis-a-vis S protein is a key mechanism underling this phenomenon. To test this, the TMPRSS2 and S proteins were expressed in cells labeled with fluorescent probes of different colors, and the cell-cell fusion between these cells was tested. Results indicate that TMPRSS2 needs to be expressed in the opposing (target) cell membrane to activate S protein rather than in the producer cell, as found for influenza A virus and metapneumoviruses. This is the first report of TMPRSS2 being required in the target cell for activation of a viral fusion protein but not for the S protein synthesized in and transported to the surface of cells. Our findings suggest that the TMPRSS2 expressed in lung tissues may be a determinant of viral tropism and pathogenicity at the initial site of SARS-CoV infection.  相似文献   

16.
Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) is initiated by specific interactions between the SARS-CoV spike (S) protein and its receptor ACE2. In this report, we screened a peptide library representing the SARS-CoV S protein sequence using a human immunodeficiency virus-based pseudotyping system to identify specific regions that affect viral entry. One of the 169 peptides screened, peptide 9626 (S residues 217-234), inhibited SARS-CoV S-mediated entry of the pseudotyped virions in 293T cells expressing a functional SARS-CoV receptor (human angiotensin-converting enzyme 2) in a dose-dependent manner (IC50 ∼ 11 μM). Alanine scanning mutagenesis was performed to assess the roles of individual residues within this region of S, which was previously uncharacterized. The effects included significant reductions in expression (K223A), viral incorporation (L218A, I230A, and N232A), and reduced viral entry (L224A, L226A, I228A, T231A, and F233A). Taken together, these results reveal a new region of the S protein that is crucial for SARS-CoV entry.  相似文献   

17.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SDelta10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.  相似文献   

18.
HIV-1 envelope glycoproteins (Env) are the only viral antigens present on the virus surface and serve as the key targets for virus-neutralizing antibodies. However, HIV-1 deploys multiple strategies to shield the vulnerable sites on its Env from neutralizing antibodies. The V1V2 domain located at the apex of the HIV-1 Env spike is known to encompass highly variable loops, but V1V2 also contains immunogenic conserved elements recognized by cross-reactive antibodies. This study evaluates human monoclonal antibodies (mAbs) against V2 epitopes which overlap with the conserved integrin α4β7-binding LDV/I motif, designated as the V2i (integrin) epitopes. We postulate that the V2i Abs have weak or no neutralizing activities because the V2i epitopes are often occluded from antibody recognition. To gain insights into the mechanisms of the V2i occlusion, we evaluated three elements at the distal end of the V1V2 domain shown in the structure of V2i epitope complexed with mAb 830A to be important for antibody recognition of the V2i epitope. Amino-acid substitutions at position 179 that restore the LDV/I motif had minimal effects on virus sensitivity to neutralization by most V2i mAbs. However, a charge change at position 153 in the V1 region significantly increased sensitivity of subtype C virus ZM109 to most V2i mAbs. Separately, a disulfide bond introduced to stabilize the hypervariable region of V2 loop also enhanced virus neutralization by some V2i mAbs, but the effects varied depending on the virus. These data demonstrate that multiple elements within the V1V2 domain act independently and in a virus-dependent fashion to govern the antibody recognition and accessibility of V2i epitopes, suggesting the need for multi-pronged strategies to counter the escape and the shielding mechanisms obstructing the V2i Abs from neutralizing HIV-1.  相似文献   

19.
BackgroundThe VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized.

Methods and Results

To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1–positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope.

Conclusions and Significance

We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.  相似文献   

20.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号