首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Knowledge of the fate of plant assimilate is fundamental to our understanding of the terrestrial carbon cycle, particularly if we are to predict the effects of changes in climate and land management practices on agroecosystems. Pulse-labelling experiments have revealed that some of the carbon fixed by plants is rapidly allocated below-ground and released back into the atmosphere in respiration. However, little is known about the fate of plant assimilate, not accounted for in soil respiration, in the longer term and how current management practices such as liming may affect this. In southern Scotland, UK, limed and unlimed acid grassland plots were pulse-labelled with 13CO2 and the turnover of 13C was studied one and two years after labelling. In this study the amount of labelled carbon remaining in shoot, root, and bulk soil pools, and how this differed between limed and unlimed plots was investigated. The results indicated that plant-root turnover was faster, and plants invested less nitrogen in the roots in the limed plots than in the unlimed plots. More 13C remained in the soil in the unlimed treatment compared to the limed treatment, but the main difference was found in the particulate organic matter, which turned over relatively quickly. The label was still above natural abundance one and two years after labelling in many cases. In addition, the results demonstrate that a 13CO2 pulse-label administered for only a few hours can be a useful approach for investigating turnover of carbon several years later.  相似文献   

2.
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.  相似文献   

3.
Carbon isotope ratios (δ13C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ13C of soil respiratory CO2 on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO2 mole fraction and δ13C and continuous open chambers. δ13C of respired CO2 and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ13C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ13C variation was driven by non‐steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ13C of the soil surface CO2 flux. Seasonal δ13C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO2 source.  相似文献   

4.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   

5.
Foliar carbon isotope discrimination (Δ) of C3 plants decreases in water‐deficit situations as discrimination by the photosynthetic primary carboxylation reaction decreases. This diminished Δ in leaves under water deficit can be used as a tracer to study whole plant carbon allocation patterns. Carbon isotope composition (δ13C value) of leaf hot water extracts or leaf tissue sap represents a short‐term integral of leaf carbon isotope discrimination and thus represents the δ13C value of source carbon that may be distributed within a plant in water‐deficit situations. By plotting the δ13C values of source carbon against the δ13C values of sink tissues, such as roots or stems, it is possible to assess carbon allocation to and incorporation into sink organs in relation to already present biomass. This natural abundance labelling method has been tested in three independent experiments, a one‐year field study with the fruit tree species Ziziphus mauritiana and peach (Prunus persica), a medium‐term drought stress experiment with Ziziphus rotundifolia trees in the glasshouse, and a short‐term drought stress experiment with soybean (Glycine max). The data show that the natural abundance labelling method can be applied to qualitatively assess carbon allocation in drought‐stressed plants. Although it is not possible to estimate exact fluxes of assimilated carbon during water deficit the method represents an easy to use tool to study integrated plant adaptations to drought stress. In addition, it is a less laborious method that can be applied in field studies as well as in controlled experiments, with plants from any developmental stage.  相似文献   

6.
Influence of dolomitic lime on DOC and DON leaching in a forest soil   总被引:3,自引:1,他引:2  
The influence of liming on leaching and distribution of dissolved organic carbon (DOC) and nitrogen (DON) in mineral soil was investigated in a leaching experiment with soil columns. Soil samples from separate horizons (O, A and B horizons) were collected from control and limed plots in a field liming experiment in a spruce forest in southern Sweden. The field liming (0.88 kg m-2) had been carried out 8 years before sampling. To minimize the variation among replicates, soil profiles were reconstructed in the laboratory so that the dry weight was the same for each individual soil horizon regardless of treatment. Two soil column types were used with either the O+A horizons or the O+A+B horizons. One Norway spruce seedling (Picea abies (L.) Karst) was planted in each soil column. Average pH in the leachate water was greater in the limed treatment than in the control treatment (5.0 versus 4.0 for O+A columns and 4.3 versus 3.8 for O+A+B columns). After reaching an approximate steady state, the leaching of DOC was 3--4 times greater from the limed O+A and O+A+B columns than from the corresponding control columns but the leaching of DON increased (3.5 times) only in the limed O+A columns. There was a significant correlation between DOC and DON in the leachates from all columns except for the control O+A+B columns, which indicated a decoupling of DOC and DON retention in the B horizon in the control treatment. This might be explained by a selective adsorption of nitrogen poor hydrophobic compounds (C/N ratio: 32--77) while there was a lower retention of nitrogen rich hydrophilic compounds (C/N ratio: 14--20). Proportionally more hydrophobic compounds were leached from the limed soil compared to the unlimed soil. These hydrophobic compounds also became more enriched in nitrogen after liming so in the limed treatment nitrogen might be adsorbed at nearly the same proportion as carbon, which might explain the fact that there was no decoupling of leached DOC and DON from the B horizon after liming.  相似文献   

7.
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems.  相似文献   

8.
Characterizing the carbon turnover in terrestrial ecosystems is critical for understanding and predicting carbon dynamics in ecosystems. We used in situ13C pulse labeling to track photosynthetic carbon fluxes from shoot to roots and to soil in a Kobresia humilis meadow on the Qinghai‐Tibet Plateau. We found that about 36.7% of labeled carbon was translocated out from the shoots within the first 24 h after photosynthetic uptake. This is equivalent to 66.1% of total 13C moving out from the shoot during the 32‐day chase period, indicating a rapid and large translocation of newly fixed carbon to belowground parts in these alpine plants. 58.7% of the assimilated 13C was transferred belowground. At the end of the chase phase, 30.9% was retained in living roots, 3.4% in dead roots, 17.2% lost as belowground respiration and 7.3% remained in the soil. In the four carbon pools (i.e., shoots, living roots, dead roots, and soil pools), living roots consistently had the highest proportion of 13C in the plant–soil system during the 32 days. Based on the 13C partitioning pattern and biomass production, we estimate a total of 4930 kg C ha?1 was allocated belowground during the vegetation growth season in this alpine meadow. Of this, roots accumulated 2868 kg C ha?1 and soils accumulated 613 kg C ha?1. This study suggests that carbon storage in belowground carbon pools plays the most important role in carbon cycles in the alpine meadow.  相似文献   

9.
Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ13C) of soil respiration (δJ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near‐surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3–7; and (c) a second period of enrichment (1–2‰) in years 8–10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more 13C‐depleted deeper in the soil than near the surface, while the bulk soil followed the well‐established pattern of 13C‐enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰).  相似文献   

10.
Over a period of three years (1990–1992) microbial biomass-C (Cmic), CO2 evolution, the Cmic:Corg ratio and the metabolic quotient for CO2 (qCO2) were determined in a Norway spruce stand (Höglwald) with experimentally acid-irrigated and limed plots since 1984. A clear relationship between soil pH and the level of microbial biomass-(Cmic) was noted, Cmic increasing with increasing soil pH in Oh or Ah horizons. More microbial biomass-C per unit C{org} (Cmic:Corg ratio) was detected in limed plots with elevated pH of Oh or Ah horizons as compared to unlimed plots with almost 3 times more Cmic per unit Corg in the limed Oh horizon. Differences here are significant at least at the p=0.05 level. The positive effects of liming (higher pH) on the Cmic:Corg ratio was more pronounced in the upper horizon (Oh)). The total CO2 evolution rate of unlimed plots was only half of that noted for limed plots which corresponded to the low microbial biomass levels of unlimed plots. The specific respiratory activity, qCO2, was similar and not significantly different between the unlimed control plot and the limed plot.Acid irrigation of plots with already low pH did not significantly affect the level of microbial biomass, the Cmic:Corg ratio or qCO2. An elevated qCO2 could be seen, however, for the limed + acid irrigated plot. The biomass seemed extremely stressed, showing with 3.8 g CO2-C mg-1 Cmic h-1 (Oh) the highest qCO2 value of all treatments. This was interpreted as a reflection of the continuous adaptation processes to the H+ ions by the microflora. The negative effect of acid irrigation of limed plots was also manifested in a decreased Cmic:Corg ratio.  相似文献   

11.
Ratios of 13С/12C and 15N/14N isotopes were identified in different parts and organs of drooping birch (Betula pendula Roth) in preforest-steppe and pine-birch forests of the Middle Urals by mass spectrometry. The data were analyzed and interpreted from the perspective of biochemical processes of carbon and nitrogen metabolism in the leaf, cambial tissue, trunk wood, branches, roots, and in the soil. The lighter isotopic composition of carbon is characteristic for the leaves, trunk cambium as well as fine (<2 mm) roots. The trunk wood is characterized by the basal trend for 13C enrichment. The heavier carbon isotopic composition inversely related to metabolic activity of organs and tissues, in addition, 13С/12C ratio corresponds to the nitrogen content in the organs and tissues, indicating the metabolic control of carbon fractionation in woody plants. The isotopic composition of nitrogen in the aboveground parts of the plant (leaves, trunk cambium, wood) and in the medium and fine roots was significantly depleted in 15N (δ15N varies from 0 to–3‰), while main roots (δ15N = 0.6 ‰) and soil (δ15N = 2.4–6.7‰) were more enriched. The ratio of stable isotopes of carbon and nitrogen is an integrating index of carbon and nitrogen metabolism in plants.  相似文献   

12.
13.
Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems.  相似文献   

14.
Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a 13CO2 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of 13C-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded 13C compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from 12C and 13C RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.  相似文献   

15.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   

16.
Willow is often used in bio-energy plantations for its potential to function as a renewable energy source, but knowledge about its effect on soil carbon dynamics is limited. Therefore, we investigated the temporal variation in carbon dynamics in willow, focusing on below-ground allocation and sequestration to soil carbon pools. Basket willow plants (Salix viminalis L.) in their second year of growth were grown in pots in a greenhouse. At five times during the plants growth, namely 0, 1, 2, 3 and 4 months after breaking winter dormancy, a subset of the plants were continuously labelled with 14CO2 in an ESPAS growth chamber for 28 days. After the labelling, the plants were harvested and separated into leaves, first and second year stems and roots. The soil was analysed for total C and 14C content as well as soil microbial biomass. Immediately after breaking dormancy, carbon stored in the first year stems was relocated to developing roots and leaves. Almost half the newly assimilated C was used for leaf development the first month of growth, dropping to below 15% in the older plants. Within the second month of growth, secondary growth of the stem became the largest carbon sink in the system, and remained so for the older age classes. Between 31 and 41% of the recovered 14C was allocated to below-ground pools. While the fraction of assimilated 14C in roots and root+soil respiration did not vary with plant age, the amount allocated to soil and soil microbial biomass increased in the older plants, indicating an increasing rhizodeposition. The total amount of soil microbial biomass was 30% larger in the oldest age class than in an unplanted control soil. The results demonstrate a close linkage between photosynthesis and below-ground carbon dynamics. Up to 13% of the microbial biomass consisted of carbon assimilated by the willows within the past 4 weeks, up to 11% of the recovered 14C was found as soil organic matter.  相似文献   

17.
We aimed to quantify the separate effects of photosynthetic and postphotosynthetic carbon isotope discrimination on δ13C of the fast‐turn‐over carbon pool (water soluble organic carbon and CO2 emitted from heterotrophic tissues), including their diel variation, along the pathway of carbon transport from the foliage to the base of the stem. For that purpose, we determined δ13C in total and water‐soluble organic matter of the foliage plus δ13C and δ18O in phloem organic matter of twigs and at three heights along the stem of Pinus sylvestris over a nine‐day period, including four measurements per day. These data were related to meteorological and photosynthesis parameters and to the δ13C of stem‐emitted CO2. In the canopy (foliage and twigs), the δ13C of soluble organic matter varied diurnally with amplitudes of up to 1.9‰. The greatest 13C enrichment was recorded during the night/early morning, indicating a strong influence of starch storage and remobilization on the carbon isotope signatures of sugars exported from the leaves. 13C enrichment of soluble organic matter from the leaves to the twig phloem and further on to the phloem of the stem was supposed to be a result of carbon isotope fractionation associated with metabolic processes in the source and sink tissues. CO2 emitted from the stem was enriched by 2.3–5.2‰ compared with phloem organic matter. When day‐to‐day variation was addressed, water‐soluble leaf δ13C and twig phloem δ18O were strongly influenced by ci/ca and stomatal conductance (Gs), respectively. These results show that both photosynthetic and postphotosynthetic carbon isotope fractionation influence δ13C of organic matter over time, and over the length of the basipetal transport pathway. Clearly, these influences on the δ13C of respired CO2 must be considered when using the latter for partitioning of ecosystem CO2 fluxes or when the assessment of δ13C in organic matter is applied to estimate environmental effects in ci/ca.  相似文献   

18.
The CO2 respired by leaves is 13C-enriched relative to leaf biomass and putative respiratory substrates (Ghashghaie et al., Phytochemistry Reviews 2, 145–161, 2003), but how this relates to the 13C content of root, or whole plant respiratory CO2 is unknown. The C isotope composition of respiratory CO2 (δR) from shoots and roots of sunflower (Helianthus annuus L.), alfalfa (Medicago sativa L.), and perennial ryegrass (Lolium perenne L.) growing in a range of conditions was analysed. In all instances plants were grown in controlled environments with CO2 of constant concentration and δ13C. Respiration of roots and shoots of individual plants was measured with an open CO2 exchange system interfaced with a mass spectrometer. Respiratory CO2 from shoots was always 13C-enriched relative to that of roots. Conversely, shoot biomass was always 13C-depleted relative to root biomass. The δ-difference between shoot and root respiratory CO2 was variable, and negatively correlated with the δ-difference between shoot and root biomass (r2 = 0.52, P = 0.023), suggesting isotope effects during biosynthesis. 13C discrimination in respiration (R) of shoots, roots and whole plants (eShoot, eRoot, ePlant) was assessed as e = (δSubstrateδR)/(1 + δR/1000), where root and shoot substrate is defined as imported C, and plant substrate is total photosynthate. Estimates were obtained from C isotope balances of shoots, roots and whole plants of sunflower and alfalfa using growth and respiration data collected at intervals of 1 to 2 weeks. eplant and eShoot differed significantly from zero. eplant ranged between −0.4 and −0.9‰, whereas eShoot was much greater (−0.6 to −1.9‰). eRoot was not significantly different from zero. The present results help to resolve the apparent conflict between leaf- and ecosystem-level 13C discrimination in respiration.  相似文献   

19.
Abstract The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13C isotope values, ?13.8‰ to ?14.0‰) and C3 plants (δ13C isotope values, ?25.6‰ to ?27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H. mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.  相似文献   

20.
Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ13C of CO2 efflux (δ13CE) from non‐leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ13CE of above‐ground plant components, whereas δ13CE of coarse roots was rather stable. During summer, δ13CE of trunks was about ?28.2‰ (Beech) and ?26.8‰ (Spruce). During winter dormancy, δ13CE increased by 5.6–9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ13CE pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ13CE of trunks during the winter results from interrupted access to recent photosynthates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号