首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.  相似文献   

2.
The tallysomycins (TLMs) belong to the bleomycin (BLM) family of antitumor antibiotics. The BLM biosynthetic gene cluster has been cloned and characterized previously from Streptomyces verticillus ATCC 15003, but engineering BLM biosynthesis for novel analogs has been hampered by the lack of a genetic system for S. verticillus. We now report the cloning and sequencing of the TLM biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158 and the development of a genetic system for S. hindustanus, demonstrating the feasibility to manipulate TLM biosynthesis in S. hindustanus by gene inactivation and mutant complementation. Sequence analysis of the cloned 80.2 kb region revealed 40 open reading frames (ORFs), 30 of which were assigned to the TLM biosynthetic gene cluster. The TLM gene cluster consists of nonribosomal peptide synthetase (NRPS) genes encoding nine NRPS modules, a polyketide synthase (PKS) gene encoding one PKS module, genes encoding seven enzymes for deoxysugar biosynthesis and attachment, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The involvement of the cloned gene cluster in TLM biosynthesis was confirmed by inactivating the tlmE glycosyltransferase gene to generate a TLM non-producing mutant and by restoring TLM production to the DeltatlmE::ermE mutant strain upon expressing a functional copy of tlmE. The TLM gene cluster is highly homologous to the BLM cluster, with 25 of the 30 ORFs identified within the two clusters exhibiting striking similarities. The structural similarities and differences between TLM and BLM were reflected remarkably well by the genes and their organization in their respective biosynthetic gene clusters.  相似文献   

3.
Polyketide synthases (PKS) perform a stepwise biosynthesis of diverse carbon skeletons from simple activated carboxylic acid units. The products of the complex pathways possess a wide range of pharmaceutical properties, including antibiotic, antitumor, antifungal, and immunosuppressive activities. We have performed a comprehensive phylogenetic analysis of multimodular and iterative PKS of bacteria and fungi and of the distinct types of fatty acid synthases (FAS) from different groups of organisms based on the highly conserved ketoacyl synthase (KS) domains. Apart from enzymes that meet the classification standards we have included enzymes involved in the biosynthesis of mycolic acids, polyunsaturated fatty acids (PUFA), and glycolipids in bacteria. This study has revealed that PKS and FAS have passed through a long joint evolution process, in which modular PKS have a central position. They appear to have derived from bacterial FAS and primary iterative PKS and, in addition, share a common ancestor with animal FAS and secondary iterative PKS. Furthermore, we have carried out a phylogenomic analysis of all modular PKS that are encoded by the complete eubacterial genomes currently available in the database. The phylogenetic distribution of acyltransferase and KS domain sequences revealed that multiple gene duplications, gene losses, as well as horizontal gene transfer (HGT) have contributed to the evolution of PKS I in bacteria. The impact of these factors seems to vary considerably between the bacterial groups. Whereas in actinobacteria and cyanobacteria the majority of PKS I genes may have evolved from a common ancestor, several lines of evidence indicate that HGT has strongly contributed to the evolution of PKS I in proteobacteria. Discovery of new evolutionary links between PKS and FAS and between the different PKS pathways in bacteria may help us in understanding the selective advantage that has led to the evolution of multiple secondary metabolite biosyntheses within individual bacteria.  相似文献   

4.
5.
Actinomycetes are currently the main source of antibiotics. Genome sequencing reveals the presence in these organisms of multiple gene clusters for the synthesis of yet unidentified secondary metabolites. Technological advances in DNA isolation, cloning and sequencing, as well as development of bioinformatics, facilitate large scale search for new gene clusters in organisms with unknown genome sequence and in environmental DNA. Methods used for detection of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are described in this article. New PKS and NRPS genes give access to new biologically active natural products which can become drugs or substrates for chemical modifications. Even more inspiring is their use in combinatorial biosynthesis to produce a variety of compounds with rationally designed structures.  相似文献   

6.
Members of the Roseobacter clade are abundant and widespread in marine habitats and have very diverse metabolisms. Production of acylated homoserine lactones (AHL) and secondary metabolites, e.g., antibiotics has been described sporadically. This prompted us to screen 22 strains of this group for production of signaling molecules, antagonistic activity against bacteria of different phylogenetic groups, and the presence of genes encoding for nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), representing enzymes involved in the synthesis of various pharmaceutically important natural products. The screening approach for NRPS and PKS genes was based on polymerase chain reaction (PCR) with degenerate primers specific for conserved sequence motifs. Additionally, sequences from whole genome sequencing projects of organisms of the Roseobacter clade were considered. Obtained PCR products were cloned, sequenced, and compared with genes of known function. With the PCR approach genes showing similarity to known NRPS and PKS genes were found in seven and five strains, respectively, and three PKS and NRPS sequences from genome sequencing projects were obtained. Three strains exhibited antagonistic activity and also showed production of AHL. Overall production of AHL was found in 10 isolates. Phylogenetic analysis of the 16S rRNA gene sequences of the tested organisms showed that several of the AHL-positive strains clustered together. Three strains were positive for three or four categories tested, and were found to be closely related within the genus Phaeobacter. The presence of a highly similar hybrid PKS/NRPS gene locus of unknown function in sequenced genomes of the Roseobacter clade plus the significant similarity of gene fragments from the strains studied to these genes argues for the functional requirement of the encoded hybrid PKS/NRPS complex. Our screening results therefore suggest that the Roseobacter clade is indeed employing PKS/NRPS biochemistry and should thus be further studied as a potential and largely untapped source of secondary metabolites.  相似文献   

7.
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.  相似文献   

8.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

9.
Molecular screening using degenerate PCR to determine the presence of secondary metabolite genes in cyanobacteria was performed. This revealed 18 NRPS and 19 PKS genes in the 21 new cyanobacterial strains examined, representing three families of cyanobacteria (Nostocales, Chroococales and Oscillatoriales). A BLAST analysis shows that these genes have similarities to known cyanobacterial natural products. Analysis of the NRPS adenylation domain indicates the presence of novel features previously ascribed to both proteobacteria and cyanobacteria. Furthermore, binding-pocket predictions reveal diversity in the amino acids used during the biosynthesis of compounds. A similar analysis of the PKS ketosynthase domain shows significant structural diversity and their presence in both mixed modules with NRPS domains and individually as part of a PKS module. We have been able to classify the NRPS genes on the basis of their binding-pockets. Further, we show how this data can be used to begin to link structure to function by an analysis of the compounds Scyptolin A and Hofmannolin from Scytonema sp. PCC 7110.  相似文献   

10.
11.
Silakowski B  Kunze B  Müller R 《Gene》2001,275(2):233-240
Many bacterial and fungal secondary metabolites are produced by polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). Recently, it has been discovered that these modular enzymatic systems can also closely cooperate to form natural products. The analysis of the corresponding biosynthetic machineries, in the form of hybrid systems, is of special interest for combinatorial biosynthesis, because the combination of PKS and NRPS can lead to an immense variety of structures that might be produced. During our screening for hybrid PKS/NRPS systems from myxobacteria, we scanned the genome of Stigmatella aurantiaca DW4/3-1 for the presence of gene loci that encode both the PKS and NRPS genes. In addition to the previously characterized myxothiazol system, we identified three further hybrid loci, three additional PKS and one further NRPS gene locus. These were analyzed by hybridization, physical mapping, PCR with degenerate oligonucleotides and sequencing of fragments of the gene clusters. The function of these genes was not known but it had already been speculated that one compound produced by the strain and detected via HPLC was a secondary metabolite. This was based on the observation that its production is dependent on an active copy of the phosphopantetheinyl transferase gene mtaA. We show here that one of the identified hybrid gene loci is responsible for the formation of this secondary metabolite. In agreement with the genetic data, the chemical structure resembles a cyclic polypeptide with a PKS sidechain. Our data show that S. aurantiaca has a broader genetic capacity to produce natural products than the number of compounds isolated from the strain so far suggests.  相似文献   

12.
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.  相似文献   

13.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   

14.
Two important classes of natural products are made by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). With most biosynthetic intermediates covalently tethered during biogenesis, protein mass spectrometry (MS) has proven invaluable for their interrogation. New mass spectrometric assay formats (such as selective cofactor ejection and proteomics style LC-MS) are showcased here in the context of functional insights into new breeds of NRPS/PKS enzymes, including the first characterization of an 'iterative' PKS, the biosynthesis of the enediyne antitumor antibiotics, the study of a new strategy for PKS initiation via a GNAT-like mechanism, and the analysis of branching strategies in the so-called 'AT-less' NRPS/PKS hybrid systems. The future of MS analysis of NRPS and PKS biosynthetic pathways lies in adoption and development of methods that continue bridging enzymology with proteomics as both fields continue their post-genomic acceleration.  相似文献   

15.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   

16.
The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed. Myxothiazol, an inhibitor of the electron transport via the bc(1)-complex of the respiratory chain, is biosynthesized by a unique combination of several polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS), which are activated by the 4'-phosphopantetheinyl transferase MtaA. Genomic replacement of a fragment of mtaB and insertion of a kanamycin resistance gene into mtaA both impaired myxothiazol synthesis. Genes mtaC and mtaD encode the enzymes for bis-thiazol(ine) formation and chain extension on one pure NRPS (MtaC) and on a unique combination of PKS and NRPS (MtaD). The genes mtaE and mtaF encode PKSs including peptide fragments with homology to methyltransferases. These methyltransferase modules are assumed to be necessary for the formation of the proposed methoxy- and beta-methoxy-acrylate intermediates of myxothiazol biosynthesis. The last gene of the cluster, mtaG, again resembles a NRPS and provides insight into the mechanism of the formation of the terminal amide of myxothiazol. The carbon backbone of an amino acid added to the myxothiazol-acid is assumed to be removed via an unprecedented module with homology to monooxygenases within MtaG.  相似文献   

17.
Functional cross talk between fatty acid biosynthesis and secondary metabolism has been discovered in several cases in microorganisms; none of them, however, involves a modular biosynthetic enzyme. Previously, we reported a hybrid modular nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway for the biosynthesis of FK228 anticancer depsipeptide in Chromobacterium violaceum strain 968. This pathway contains two PKS modules on the DepBC enzymes that lack a functional acyltransferase (AT) domain, and no apparent AT-encoding gene exists within the gene cluster or its vicinity. We report here that, through reconstitution of the FK228 biosynthetic pathway in Escherichia coli cells, two essential genes, fabD1 and fabD2, both encoding a putative malonyl coenzyme A (CoA) acyltransferase component of the fatty acid synthase complex, are positively identified to be involved in FK228 biosynthesis. Either gene product appears sufficient to complement the AT-less PKS modules on DepBC for polyketide chain elongation. Concurrently, a gene (sfp) encoding a putative Sfp-type phosphopantetheinyltransferase was identified to be necessary for FK228 biosynthesis as well. Most interestingly, engineered E. coli strains carrying variable genetic components produced significant levels of FK228 under both aerobic and anaerobic cultivation conditions. Discovery of the trans complementation of modular PKSs by housekeeping ATs reveals natural product biosynthesis diversity. Moreover, demonstration of anaerobic production of FK228 by an engineered facultative bacterial strain validates our effort toward the engineering of novel tumor-targeting bioagents.  相似文献   

18.
19.
Hillson NJ  Balibar CJ  Walsh CT 《Biochemistry》2004,43(35):11344-11351
Nonribosomal peptide synthetases (NRPS), fatty acid synthases (FAS), and polyketide synthases (PKS) are multimodular enzymatic assembly lines utilized in natural product biosynthesis. The oligomeric structure of these assembly line enzymes has been a topic of interest because higher order oligomeric quaternary structural arrangements allow for alternate paths of acyl intermediate elongation and present unique challenges for the chimeric engineering of hybrid assembly lines. Unlike other NRPS systems that in general appear to be monomeric, the six domain (Cy1-Cy2-A-C1-PCP-C2) VibF subunit of vibriobactin synthetase has previously been shown to be dimeric, the same oligomeric state as that observed for FAS and PKS assembly lines. It has been demonstrated that the C1 domain within VibF is catalytically inactive and is not required for vibriobactin production. Utilizing sedimentation equilibrium analytical ultracentrifugation experiments to determine the oligomeric states of several VibF subfragments, we report that the C1 domain is largely responsible for VibF dimerization. Comparative rates of vibriobactin production, coupled with dissociation constants for VibF subfragment pair heterocomplexes, suggest that the mere presence of C1 does not detectably enhance the catalytic rates of neighboring domains, but it may properly orient Cy1-Cy2-A relative to PCP-C2.  相似文献   

20.
【目的】分析洛伐他汀工业生产菌株土曲霉HZ01的次级代谢产物合成能力,为后期的遗传改造、次级代谢产物及其基因簇挖掘提供指导。【方法】对洛伐他汀发酵条件下的样品进行了转录组分析,同时运用色谱分离技术及波谱学方法对主要次级代谢产物进行了分离和结构鉴定。【结果】洛伐他汀合成相关基因转录水平非常高,还有4个聚酮合酶(PKS)、6个非核糖体多肽合成酶(NRPS)和1个PKS-NRPS杂合酶基因进行了转录,其他PKS和NRPS基因都处于沉默状态。此外,从该菌的发酵产物中分离鉴定了10个主要副产物并确定了其结构。【结论】土曲霉HZ01是一株优良的洛伐他汀生产菌株,在构建次级代谢产物异源合成细胞工厂和鉴定次级代谢产物生物合成途径方面具有很好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号