首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Distinct classes of neurons are generated from progenitor cells distributed in characteristic dorsoventral patterns in the developing spinal neural tube. We define restricted neural progenitor populations by the discrete, nonoverlapping expression of Ngn1, Math1, and Mash1. Crossinhibition between these bHLH factors is demonstrated and provides a mechanism for the generation of discrete bHLH expression domains. This precise control of bHLH factor expression is essential for proper neural development since as demonstrated in both loss- and gain-of-function experiments, expression of Math1 or Ngn1 in dorsal progenitor cells determines whether LH2A/B- or dorsal Lim1/2-expressing interneurons will develop. Together, the data suggest that although Math1 and Ngn1 appear to be redundant with respect to neurogenesis, they have distinct functions in specifying neuronal subtype in the dorsal neural tube.  相似文献   

4.
5.
Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube. We have blocked BMP and transforming growth factor-β superfamily (TGFβ) function in the chick embryo using Noggin, a BMP antagonist, and siRNA against Smad4. We show that BMPs/TGFβs are necessary to regulate pattern formation and the specification of neural progenitor populations in the dorsal neural tube. BMPs also serve to establish discrete expression domains of Wnt ligands, receptors, and antagonists along the dorsal-ventral axis of the neural tube. Using the extracellular domain of Frizzled 8 to block Wnt signaling and Wnt3a ligand misexpression to activate WNT signaling, we demonstrate that the Wnt pathway acts mitogenically to expand the populations of neuronal progenitor cells specified by BMP. Thus, BMPs, acting through WNTs, couple patterning and growth to generate dorsal neuronal fates in the appropriate proportions within the neural tube.  相似文献   

6.
7.
8.
9.
10.
11.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

12.
The chick dorsal feather-forming dermis originates from the dorsomedial somite and its formation depends primarily on Wnt1 from the dorsal neural tube. We investigate further the origin and specification of dermal progenitors from the medial dermomyotome. This comprises two distinct domains: the dorsomedial lip and a more central region (or intervening zone) that derives from it. We confirm that Wnt1 induces Wnt11 expression in the dorsomedial lip as previously shown, and show using DiI injections that some of these cells, which continue to express Wnt11 migrate under the ectoderm, towards the midline, to form most of the dorsal dermis. Transplantation of left somites to the right side to reverse the mediolateral axis confirms this finding and moreover suggests the presence of an attractive or permissive environment produced by the midline tissues or/and a repellent or inadequate environment by the lateral tissues. By contrast, the dorsolateral dermal cells just delaminate from the surface of the intervening space, which expresses En1. Excision of the axial organs or the ectoderm, and grafting of Wnt1-secreting cells, shows that, although the two populations of dermal progenitors both requires Wnt1 for their survival, the signalling required for their specification differs. Indeed Wnt11 expression relies on dorsal neural tube-derived Wnt1, while En1 expression depends on the presence of the ectoderm. The dorsal feather-forming dermal progenitors thus appear to be differentially regulated by dorsal signals from the neural tube and the ectoderm, and derive directly and indirectly from the dorsomedial lip. As these two dermomyotomal populations are well known to also give rise to epaxial muscles, an isolated domain of the dermomyotome that contains only dermal precursors does not exist and none of the dermomyotomal domains can be considered uniquely as a dermatome.  相似文献   

13.
BACKGROUND: Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS: We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS: Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.  相似文献   

14.
During spinal cord development, distinct classes of interneurons arise at stereotypical locations along the dorsoventral axis. In this paper, we demonstrate that signaling through bone morphogenetic protein (BMP) type 1 receptors is required for the formation of two populations of commissural neurons, DI1 and DI2, that arise within the dorsal neural tube. We have generated a double knockout of both BMP type 1 receptors, Bmpr1a and Bmpr1b, in the neural tube. These double knockout mice demonstrate a complete loss of D1 progenitor cells, as evidenced by loss of Math1 expression, and the subsequent failure to form differentiated DI1 interneurons. Furthermore, the DI2 interneuron population is profoundly reduced. The loss of these populations of cells results in a dorsal shift of the dorsal cell populations, DI3 and DI4. Other dorsal interneuron populations, DI5 and DI6, and ventral neurons appear unaffected by the loss of BMP signaling. The Bmpr double knockout animals demonstrate a reduction in the expression of Wnt and Id family members, suggesting that BMP signaling regulates expression of these factors in spinal cord development. These results provide genetic evidence that BMP signaling is crucial for the development of dorsal neuronal cell types.  相似文献   

15.
16.
During early neural development, the Nkx6.1 homeodomain neural progenitor gene is specifically expressed in the ventral neural tube, and its activity is required for motoneuron generation in the spinal cord. We report that Nkx6.1 also controls oligodendrocyte development in the developing spinal cord, possibly by regulating Olig gene expression in the ventral neuroepithelium. In Nkx6.1 mutant spinal cords, expression of Olig2 in the motoneuron progenitor domain is diminished, and the generation and differentiation of oligodendrocytes are significantly delayed and reduced. The regulation of Olig gene expression by Nkx6.1 is stage dependent, as ectopic expression of Nkx6.1 in embryonic chicken spinal cord results in an induction of Olig2 expression at early stages, but an inhibition at later stages. Moreover, the regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 also appears to be region specific. In the hindbrain, unlike in the spinal cord, Olig1 and Olig2 can be expressed both inside and outside the Nkx6.1-expressing domains and oligodendrogenesis in this region is not dependent on Nkx6.1 activity.  相似文献   

17.
We have examined how genetic pathways that specify neuronal identity and regulate neurogenesis interface in the vertebrate neural tube. Here, we demonstrate that expression of the proneural gene Neurogenin2 (Ngn2) in the ventral spinal cord results from the modular activity of three enhancers active in distinct progenitor domains, suggesting that Ngn2 expression is controlled by dorsoventral patterning signals. Consistent with this hypothesis, Ngn2 enhancer activity is dependent on the function of Pax6, a homeodomain factor involved in specifying the identity of ventral spinal cord progenitors. Moreover, we show that Ngn2 is required for the correct expression of Pax6 and several homeodomain proteins expressed in defined neuronal populations. Thus, neuronal differentiation involves crossregulatory interactions between a bHLH-driven program of neurogenesis and genetic pathways specifying progenitor and neuronal identity in the spinal cord.  相似文献   

18.
19.
20.
We generated a transgenic mouse line named E1-Ngn2/Cre that expresses Cre recombinase and GFP under the control of the E1 enhancer element of the gene Ngn2 (Scardigli et al.: Neuron 31:203-217, 2001). Cre-recombinase activity and GFP fluorescence are consistent with the reported expression pattern controlled by the E1-Ngn2 enhancer. Recombination was detected in the progenitor domains p1 and p2 in the ventricular zone of the neural tube and in distinct domains of the pretectum, the dorsal and ventral thalamus, the tegmentum of the mesencephalon, and the hindbrain. In the developing cortex, Cre-recombinase activity is confined to a subpopulation of progenitors predominantly in the region of the ventral and lateral pallium. The E1-Ngn2/Cre mouse line thus provides an excellent novel tool for a region-specific conditional mutagenesis in the developing CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号