首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants.  相似文献   

2.
The non-pathogenic endophytic fungus, Fusarium oxysporum strain 162, originally isolated from the endorhiza of tomato roots, reduces damage caused by Meloidogyne incognita, by inhibiting juvenile penetration of and development in the root. However, little is known about the mode of action of this endophyte fungus against the nematode. This study aimed at investigating how the endophyte affects nematode motility and survival and if induced resistance plays a role in the relationship. In a previous study, F. oxysporum strain 162 decreased nematode penetration of tomato up to 60%. In experiments using a split-root chamber to test for induced resistance, nematode penetration, number of galls, and number of egg masses were investigated 2 and 5 weeks after nematode inoculation. Split-root plants treated with F. oxysporum strain 162 showed 26-45% less nematode penetration, 21-36% less galls and a 22-26% reduction in the number of egg masses in the roots not directly inoculated with the fungus when compared to untreated control plants in repeated tests. In conclusion, inoculation of tomato plants with the non-pathogenic fungal endophyte F. oxysporum strain 162 resulted in a signficant reduction of nematode infection, which was in part due to induced resistance in the first 2-3 weeks after fungal inoculation.  相似文献   

3.
The biological control potential of an isolate of Pochonia chlamydosporia var. chlamydosporia against Heterodera schachtii was examined by assessing the percentage of females and cysts that became infected on water agar, the effect of culture filtrate on juvenile mobility, and the effects of the fungus on the final population of the nematode on sugar beet under greenhouse conditions. After 3 weeks at 20°C, 74 and 95% of the eggs within cysts and females, respectively, were colonised by the fungus on water agar. The full concentration of the fungal filtrate from cultures in malt extract broth killed only 12% of the juveniles after 24 h at 25°C. In the greenhouse experiment, adding 16,000 chlamydospores of the fungus per gram of soil as either colonised barley grains or spores reduced the final number of females on roots of sugar beet by 50 and 66%, respectively, after 3 months. The reproduction factor was reduced to ×2 in spore-treated soil compared with ×5 in the untreated control, and 18% of the eggs in spore-treated soil were colonised by fungal mycelium. Generally, P. chlamydosporia var. chlamydosporia was more efficient at reducing the nematode population when applied as spores without any substrate than when used as colonised barley grains.  相似文献   

4.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

5.
The effects of the endoparasitic fungus Hirsutella minnesotensis on populations of Meloidogyne hapla from Michigan (MI), Rhode Island (RI), Connecticut (CT), Lyndonville, New York (NYL), Geneva, New York (NYG), and Wisconsin (WI) were studied in the greenhouse. Twenty-day-old tomato (cv. Rutgers) seedlings were inoculated with either 0 or 600 eggs of each nematode population mixed with either 0, 0.02, or 0.1 g of fresh H. minnesotensis mycelium 0.1 L-1 of soil in pots containing 0.5 L of soil, and maintained at 25±2°C for 2 months. No effect of the fungal treatments and nematode treatments on tomato plant heights and shoot dry weights was observed. While all M. hapla populations were suppressed by H. minnesotensis, the degree to which each population was affected varied slightly. Across fungal treatments and nematode populations, the fungus reduced total number of nematodes in roots by 61-98%, with the highest for NYG and RI, intermediate for NYL and CT, and lowest for MI and WI populations. The study demonstrated that H. minnesotensis may be used as a potential suppressor of M. hapla in vegetable production systems in the Great Lakes Region.  相似文献   

6.
Fluorescent pseudomonad isolates G309 and CW2, in combination with the resistance inducer acibenzolar-S-methyl (ASM), improved control of fungal and bacterial diseases on tomato plants. The interactions of the bacteria in the presence of ASM showed that in vitro growth of Pseudomonas fluorescens G309 and Pseudomonas sp. strain CW2 was not affected in King's B broth supplemented with 10 and 20 microM ASM. Also, the bacterial cells were not able to utilize ASM as a nutrient source. In vitro production of the two antimicrobial secondary metabolites phenazine-1-carboxylic acid and 2-OH-phenazine by the isolate CW2 was not affected within 3 days from incubation. In contrary, addition of ASM at a concentration of 20 microM to King's B liquid medium significantly increased production of salicylic acid by isolate G309. When roots of tomato plants were treated with G309 or CW2 cell suspensions containing 20 microM ASM, the number of bacterial cells recovered from the rhizosphere was significantly higher in the combined treatments than in the single applications 5, 10, and 15 days after inoculation. However, ASM at a higher concentration (50 microM) did not appreciably enhance the population sizes of either bacterial isolate in the rhizosphere. Enhanced bacterial cell densities in the rhizosphere of tomato plants were also determined following simultaneous treatments of tomato roots with 10 and 20 microM ASM in combination with the transformed isolate G309-384 (mini-Tn5gfp), which encodes the green fluorescent protein.  相似文献   

7.
任玮  杨韧  张永新  唐明 《菌物学报》2021,40(5):992-1007
本研究以太白山自然保护区蒿坪站杜鹃兰Cremastra appendiculata为材料,采用菌丝团和根组织分离法进行真菌分离,并用ITS序列分子鉴定;用变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)分析根部内生真菌多样性,研究海拔和根际土理化性质对真菌多样性的影响。分离到79株19种真菌,均为子囊菌门Ascomycota,隶属于座囊菌纲Dothideomycetes 1目2科2种和粪壳菌纲Sordariomycetes 7目10科17种,其中12种兰科菌根真菌。DGGE检测到80种真菌,其中兰科菌根真菌交链链格孢、锈腐土赤壳和木霉属真菌可通过组织分离法得到,担子菌门Basidiomycota 3种真菌只在DGGE检测到。随着海拔升高,根际土硝态氮和速效磷下降,导致真菌丰富度和香侬维纳指数降低,辛普森指数升高。本研究为发掘此地区杜鹃兰菌根真菌资源进行杜鹃兰人工培育奠定基础。  相似文献   

8.
The effects of a host plant on reproduction/abundance of fungal populations in relation to soil nutrients released by plants in the rhizosphere were studied. Abundance in the soil and potato rhizosphere of the fungi Paecilomyces lilacinus, Monographella cucumerina (CABI 380408) and Pochonia chlamydosporia var. chlamydosporia (Pc280, potato cyst nematode biotype) and P. chlamydosporia var. catenulata (Pc392, root‐knot nematode biotype) were assessed. The different ability of break crops (oilseed rape, sugarbeet and wheat) in the potato rotation to support Pa. lilacinus, Pochonia isolates Pc280 and Pc392 and abundance of the latter two isolates in soil and rhizosphere of potato plants infected with Meloidogyne incognita were also studied. Potato chits and crop seedlings were planted into boiling tubes containing 5000 chlamydospores or conidia g?1 in acid washed sand (pH 6) and kept in a growth chamber at 20°C, and 16 h of light for up to 9 weeks. The abundance of the fungi in sand (fallow) differed significantly between fungal species, being in general less abundant in the absence than in the presence of the plant, although there was no interaction between plant species and fungal isolate. There was evidence of a different response to Me. incognita for Pc392 than for Pc280 but there was no significant effect of the presence of the nematode on the rate of increase of the fungus.  相似文献   

9.
Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant–microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield of peanut in different years. Plant growth-promoting fluorescent pseudomonad isolates, viz. PGPR1, PGPR2 and PGPR4, significantly enhanced pod yield (23–26%, 24–28% and 18–24%, respectively), haulm yield and nodule dry weight over the control in 3 years. Other attributes like root length, pod number, 100-kernel mass, shelling out-turn and nodule number were also enhanced. Seed bacterization with plant growth-promoting P. fluorescens isolates, viz. PGPR1, PGPR2 and PGPR4, suppressed the soil-borne fungal diseases like collar rot of peanut caused by A. niger and PGPR4 also suppressed stem rot caused by S. rolfsii. Studies on the growth patterns of PGPR isolates utilizing the seed leachate as the sole source of C and N indicated that PGPR4 isolate was the best in utilizing the seed leachate of peanut, cultivar JL24. Studies on the rhizosphere competence of the PGPR isolates, evaluated on the basis of spontaneous rifampicin resistance, indicated that PGPR7 was the best rhizoplane colonizer and PGPR1 was the best rhizosphere colonizer. Although the presence of growth-promoting traits in vitro does not guarantee that an isolate will be plant growth promoting in nature, results suggested that besides ACC-deaminase activity of the PGPR isolates, expression of one or more of the traits like suppression of phytopathogens, solubilization of tri-calcium phosphate, production of siderophore and/or nodulation promotion might have contributed to the enhancement of growth, yield and nutrient uptake of peanut.  相似文献   

10.
The fungus Pochonia chlamydosporia is a potential biological control agent for plant parasitic nematodes, but to date, there has been little investigation of interactions (competitive, antagonistic or synergistic) between different isolates that occur together on roots and nematode galls. Real-time quantitative PCR (qPCR) has greatly improved the study of many fungi in situ on plant and nematode hosts, but distinguishing closely related isolates remains difficult. In this study, primers to discriminate P. chlamydosporia var. chlamydosporia and P. chlamydosporia var. catenulata were used to measure the relative abundance of isolates of the two varieties when inoculated singly or together on tomato plants. Also, sequence-characterised amplified polymorphic regions were identified to distinguish two different isolates of P. chlamydosporia var. chlamydosporia . Individual 1-cm root segments and nematode galls were excised, DNA extracted and subjected to real-time qPCR with the discriminatory primers. The qPCR method proved sensitive and reproducible and demonstrated that roots and nematode galls were not uniformly colonised by the fungi. Results indicated that the P. chalmydosporia var. catenulata isolate was more abundant on roots and eggs than P. chlamydosporia var. chlamydosporia , but all the isolates infected a similar proportion of nematode eggs. There was an indication that the abundance of each fungal isolate was reduced in co-inoculation experiments compared with single inoculations, but the number of root segments and galls colonised was not statistically significantly different.  相似文献   

11.
The significance of fungal endophytes in African agriculture, particularly Kenya, has not been well investigated. Therefore, the objective of the present work was isolation, multi-gene phylogenetic characterization and biocontrol assessment of endophytic fungi harbored in tomato roots for nematode infection management. A survey was conducted in five different counties along the central and coastal regions of Kenya to determine the culturable endophytic mycobiota. A total of 76 fungal isolates were obtained and characterized into 40 operational taxonomic units based on the analysis of ITS, β-tubulin and tef1α gene sequence data. Among the fungal isolates recovered, the most prevalent species associated with tomato roots were members of the Fusarium oxysporum and F. solani species complexes. Of the three genes utilized for endophyte characterization, tef1α provided the best resolution. A combination of ITS, β-tubulin and tef1α resulted in a better resolution as compared to single gene analysis. Biotests demonstrated the ability of selected non-pathogenic fungal isolates to successfully reduce nematode penetration and subsequent galling as well as reproduction of the root-knot nematode Meloidogyne incognita. Most Trichoderma asperellum and F. oxysporum species complex isolates reduced root-knot nematode egg densities by 35–46 % as compared to the non-fungal control and other isolates. This study provides first insights into the culturable endophytic mycobiota of tomato roots in Kenya and the potential of some isolates for use against the root-knot nematode M. incognita. The data can serve as a framework for fingerprinting potential beneficial endophytic fungal isolates which are optimized for abiotic and biotic environments and are useful in biocontrol strategies against nematode pests in Kenyan tomato cultivars. This information would therefore provide an alternative or complementary crop protection component.  相似文献   

12.
基于高通量测序的杨树人工林根际土壤真菌群落结构   总被引:2,自引:0,他引:2  
研究不同根序细根根际土壤微生物群落组成结构对深入了解根系-微生物互作关系具有重要意义.本研究采用Illumina MiSeq测序平台,对杨树人工林非根际土壤和不同根序细根根际土壤的真菌群落结构进行分析.物种注释结果显示: 杨树1~2级根(R1)、3级根(R2)和4~5级(R3)根际及非根际土壤(NR)中分别包含128、124、130和101个真菌属,表明杨树根际存在对真菌群落构建的选择性机制.不同根序根际土壤中相对丰度>1%的真菌属有7个,木霉属在1~2级根根际土壤中丰度较高,毛孢子菌属和曲霉属分别是3级根和4~5级根根际土壤中丰度最高的真菌属.α多样性指数表明: 根际土壤真菌的多样性在不同根序间存在显著差异,低级根显著高于高级根(P<0.05).β多样性指数表明: 真菌群落随着序级的升高差异性不断上升,相似性不断降低.不同根序细根根际真菌群落的趋异化组成和结构与细根功能具有密切关系.  相似文献   

13.
An unnamed fungus, designated ARF, that parasitizes eggs and sedentary stages of cyst nematodes is a potential biological control agent of Heterodera glycines. The objectives of this study were to determine whether ARF isolates differ in their ability to suppress nematode numbers in soil and to compare the efficacy of ARF in heat-treated and native soil. The effectiveness of 11 ARF isolates was compared by introducing homogenized mycelium into heat-treated soil. Soybean seedlings were transplanted into pots containing fungus-infested soil and inoculated with H. glycines. After 30 or 60 days, the number of nematodes and the percentage of parasitized eggs were determined. Three isolates (907, 908, and TN14), which were previously reported to be weak egg parasites in vitro, consistently suppressed nematode numbers by 50% to 100%. Of the isolates previously reported to be aggressive egg parasites, four (903, BG2, MS3, and TN12) reduced nematode numbers by 56% to 69% in at least one experimental trial, but the other four had no effect on nematode numbers. When the efficacy of isolate TN14 was tested in heat-treated and native soil, nematode suppression was greater in the heat-treated soil in only one of two trials. In both soil treatments, nematode numbers were reduced by more than 60%. We conclude that virulence toward nematode eggs in vitro is a poor indicator of effectiveness of an ARF isolate in soil, and that the presence of soil microbes may reduce, but does not completely inhibit, activity of isolate TN14.  相似文献   

14.
The root-knot nematode (Meloidogyne spp.), which represents a global threat to agricultural production, can cause serious losses in both the yield and quality of many crops. Endophytic bacteria are known to have great potential against Meloidogyne incognita. The colonisation ability of endophytic Bacillus cereus BCM2 in tomato roots and its biological control efficacy of M. incognita were investigated. By the end of the growth period of tomato plants, the population of BCM2 in the rhizosphere soils and roots of the tomato were 5.86 and 3.38 log CFU g?1, respectively, indicating that BCM2 can colonise tomato roots for long periods of time. Pre-inoculation with BCM2 resulted in a significant reduction in the population of M. incognita and the gall index of tomato compared to the untreated control, and there was an increase in the tomato yield of 47.4%. Colony counts showed that the population of BCM2 in tomato roots was affected by soil type and pH, and the colonisation of BCM2 in tomato rhizosphere soils was influenced by soil water and organic matter contents. We observed that the biocontrol effects of BCM2 were best when soil pH was 7. Pre-inoculation with BCM2 can inhibit the formation of tomato galls more effectively when soil water content is 25%, and rich organic matter content was conducive to a reduction in the number of M. incognita second stage juveniles (J2s) in soil. These results demonstrated that B. cereus BCM2 has great potential for controlling M. incognita in tomato plants.  相似文献   

15.
The fungal parasite of nematode eggs Pochonia chlamydosporia is also a root endophyte known to promote growth of some plants. In this study, we analysed the effect of nine P. chlamydosporia isolates from worldwide origin on tomato growth. Experiments were performed at different scales (Petri dish, growth chamber and greenhouse conditions) and developmental stages (seedlings, plantlets and plants). Seven P. chlamydosporia isolates significantly (P < 0.05) increased the number of secondary roots and six of those increased total weight of tomato seedlings. Six P. chlamydosporia isolates also increased root weight of tomato plantlets. Root colonisation varied between different isolates of this fungus. Again P. chlamydosporia significantly increased root growth of tomato plants under greenhouse conditions and reduced flowering and fruiting times (up to 5 and 12 days, respectively) versus uninoculated tomato plants. P. chlamydosporia increased mature fruit weight in tomato plants. The basis of the mechanisms for growth, flowering and yield promotion in tomato by the fungus are unknown. However, we found that P. chlamydosporia can produce Indole‐3‐acetic acid and solubilise mineral phosphate. These results suggest that plant hormones or nutrient ability could play an important role. Our results put forward the agronomic importance of P. chlamydosporia as biocontrol agent of plant parasitic nematodes with tomato growth promoting capabilities.  相似文献   

16.
In the present study, 43 isolates of Phosphate solubilizing rhizobacteria (PSRB) were isolated from 37 rhizospheric soil samples of tomato collected from tomato growing regions of Karnataka. Among the 43 isolates, 33 were found to be positive for solubilizing both inorganic and organic forms of phosphorous. The isolates were analyzed for their ability to colonize roots of tomato and to increase the seed quality parameters under laboratory conditions. On the basis of above criteria, 16 isolates were selected for further studies. Organic acids from PSRB isolates were analyzed and phytase zymogram for two isolates viz., PSRB21 and 31 was prepared. Under greenhouse conditions, all selected isolates showed increased shoot length, root length, fresh weight, dry weight and phosphorous content of tomato seedlings to various extent with respect to control. Analysis of pH and available phosphorous in rhizosphere soil samples of 30 day-old-seedlings revealed that the available phosphorous content was high in rhizospheric soil samples of plants raised from seeds bacterized with PSRB isolates over control. Even though all selected PSRB’s were able to increase the plant growth, only few of them showed protection against fusarium wilt and none of them against early blight.  相似文献   

17.
《Journal of Asia》1999,2(2):93-96
Application of Microcoleus vaginatus, a blue-green alga (Cyanobacterium) at different levels along with Meloidogyne incognita, second stage larvae, in the rhizosphere of tomato plants; showed that the plant growth as well as yield of tomato were increased and gall formations and nematode populations decreased with the increase in inoculum level of M. vaginatus. An inoculum level of 20 ml endospores suspension of M. vaginatus (2.4 × 106 endospores per ml) per plant was optimum to reduce nematode attack with a population density of 1000 larvae per kg soil. Plant growth and yield of fruits were greatly suppressed and gall formations on roots, and nematode populations in soil were increased when M. incognita larvae added five days prior to M. vaginatus inoculation. On the other hand, when M. vaginatus inoculated ten days before nematode inoculation, suppressive effect of M. incognta on plants was reduced and their population density as well as gall formations were also decreased significantly. The efficacy of simultaneous inoculation of both nematode and M. vaginatus was lied in between two treatments discussed above.  相似文献   

18.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations.  相似文献   

19.
The effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent for root-knot nematodes was investigated in four experiments. The growth of the fungus in the rhizosphere differed significantly with different plant species, the brassicas kale and cabbage supporting the most extensive colonization. The presence of nematodes in roots increased the growth of the fungus on most plants, and this effect was associated with the emergence of egg masses on the root surface; the presence of Meloidogyne incognita did not stimulate growth of the fungus in the rhizosphere until 5 weeks after the addition of infective juveniles to soil. The susceptibility of the plant host to M. incognita attack influenced the numbers of nematode eggs parasitized by the fungus. The control of the nematode was less effective on tomato roots, which produced large galls as a result of nematode infection compared with control on potato roots where galls were smaller, despite the greater abundance of the fungus in the rhizosphere of tomato plants. In large galls, a significant proportion of the egg masses remained embedded in the roots and was isolated from the fungus which was confined to the rhizosphere. Hence, the plant species has a marked effect on the efficacy of V. chlamydosporium as a biological control agent.  相似文献   

20.
通过种子萌发和盆栽促生试验研究3株芽孢杆菌Bs10、Ba12和Bl10对番茄的促生作用及其对番茄根域微生物区系的调节作用.结果表明: 3株芽孢杆菌对番茄种子的胚轴、胚根和番茄植株的生长有明显的促进作用,处理后番茄根系的总长度、总表面积和总体积均显著增加;处理后土壤中细菌数量和比例显著增加,真菌数量和比例明显减少.与对照相比,土壤微生物区系优势菌数量发生改变:优势甲基营养型芽孢杆菌在番茄根区、根表土壤中和根内的数量大幅提高;病原真菌腐皮镰刀菌和尖孢镰刀菌在根区和根表土壤中的数量显著减少.推知芽孢杆菌对根系微生物区系的调节作用是其发挥防病促生作用的重要机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号