首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations.  相似文献   

2.
Arbuscular mycorrhizal (AM) fungi and non-pathogenic strains of soil-borne pathogens have been shown to control plant parasitic nematodes. As AM fungi and non-pathogenic fungi improve plant health by different mechanisms, combination of two such partners with complementary mechanisms might increase overall control efficacy and, therefore, provide an environmentally safe alternative to nematicide application. Experiments were conducted to study possible interactions between the AM fungus Glomus coronatum and the non-pathogenic Fusarium oxysporum strain Fo162 in the control of Meloidogyne incognita on tomato. Pre-inoculation of tomato plants with G. coronatum or Fo162 stimulated plant growth and reduced M. incognita infestation. Combined application of the AM fungus and Fo162 enhanced mycorrhization of tomato roots but did not increase overall nematode control or plant growth. A higher number of nematodes per gall was found for mycorrhizal than non-mycorrhizal plants. In synergisms between biocontrol agents, differences in their antagonistic mechanisms seem to be less important than their effects on different growth stages of the pathogen.  相似文献   

3.
A competitive PCR (cPCR) assay was developed to quantify the nematophagous fungus Verticillium chlamydosporium in soil. A gamma-irradiated soil was seeded with different numbers of chlamydospores from V. chlamydosporium isolate 10, and samples were obtained at time intervals of up to 8 weeks. Samples were analyzed by cPCR and by plating onto a semiselective medium. The results suggested that saprophytic V. chlamydosporium growth did occur in soil and that the two methods detected different phases of growth. The first stage of growth, DNA replication, was demonstrated by the rapid increase in cPCR estimates, and the presumed carrying capacity (PCC) of the soil was reached after only 1 week of incubation. The second stage, an increase in fungal propagules presumably due to cell division, sporulation, and hyphal fragmentation, was indicated by a less rapid increase in CFU, and 3 weeks was required to reach the PCC. Experiments with field soil revealed that saprophytic fungal growth was limited, presumably due to competition from the indigenous soil microflora, and that the PCR results were less variable than the equivalent plate count results. In addition, the limit of detection of V. chlamydosporium in field soil was lower than that in gamma-irradiated soil, suggesting that there was a background population of the fungus in the field, although the level was below the limit of detection. Tomatoes were infected with the root knot nematode (RKN) or the potato cyst nematode (PCN) along with a PCN-derived isolate of the fungus (V. chlamydosporium isolate Jersey). Increases in fungal growth were observed in the rhizosphere of PCN-infested plants but not in the rhizosphere of RKN-infested plants after 14 weeks using cPCR. In this paper we describe for the first time PCR-based quantification of a fungal biological control agent for nematodes in soil and the rhizosphere, and we provide evidence for nematode host specificity that is highly relevant to the biological control efficacy of this fungus.  相似文献   

4.
The non-pathogenic endophytic fungus, Fusarium oxysporum strain 162, originally isolated from the endorhiza of tomato roots, reduces damage caused by Meloidogyne incognita, by inhibiting juvenile penetration of and development in the root. However, little is known about the mode of action of this endophyte fungus against the nematode. This study aimed at investigating how the endophyte affects nematode motility and survival and if induced resistance plays a role in the relationship. In a previous study, F. oxysporum strain 162 decreased nematode penetration of tomato up to 60%. In experiments using a split-root chamber to test for induced resistance, nematode penetration, number of galls, and number of egg masses were investigated 2 and 5 weeks after nematode inoculation. Split-root plants treated with F. oxysporum strain 162 showed 26-45% less nematode penetration, 21-36% less galls and a 22-26% reduction in the number of egg masses in the roots not directly inoculated with the fungus when compared to untreated control plants in repeated tests. In conclusion, inoculation of tomato plants with the non-pathogenic fungal endophyte F. oxysporum strain 162 resulted in a signficant reduction of nematode infection, which was in part due to induced resistance in the first 2-3 weeks after fungal inoculation.  相似文献   

5.
【背景】根结线虫病害严重制约我国设施蔬菜的生产。丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)作为土壤中最重要的有益真菌之一,可以促进植物生长,提高植物抗病性,减轻土传真菌和线虫病害的发生。在蔬菜保护地栽培中,AMF对于植物线虫病防治作用的研究受到了广泛关注。【目的】针对番茄生产中危害最严重的南方根结线虫(Meliodogyne incognita)病害问题,研究AMF和番茄品种不同组合的抗线虫效应,以期为菌根真菌作为生物防治剂和生物菌肥应用于实际生产提供技术基础。【方法】在灭菌土壤中,人工接种根结线虫,比较不同菌种Rhizophagus intraradices(Ri)、Acaulosporamellea(Am)及菌种组合Rhizophagusintraradices+Acaulosporamellea(Ri+Am)在不同番茄品种(感病品种蒙特卡罗和抗线虫品种仙客1号)上对南方根结线虫侵染和繁殖的影响,研究AMF对根结线虫的拮抗效应。另外,采用南方根结线虫连作发病的土壤,在感病品种蒙特卡洛上接种AMF混合菌种Ri+Am,番茄苗移栽入连作土壤中,测定各生长指标和调查根结和卵块数量,评价接种AMF处理对根结线虫病的防治效果。【结果】在灭菌土壤中,普通番茄品种蒙特卡罗的菌根效应显著优于抗线虫番茄品种仙客1号,表现为前者单位根重的根结和卵块的数量均比对照显著降低,而后者仅降低了卵块数量;蒙特卡罗上接种Ri+Am混合菌种的效果优于接种单一菌种Am和Ri;而仙客1号上接种Ri的效果更好。接种线虫也显著影响了AMF的侵染,而且对抗性品种仙客1号的影响更为明显。但除了接种Am的处理,大多数处理收获时菌根侵染率仍维持较高的水平(70%以上)。在连作土壤中,感病品种蒙特卡罗接种混合菌种Ri+Am具有较好的抗/耐线虫效应,主要表现为促进植株生长,显著降低根结和卵块数量,但菌根侵染率较灭菌土壤低,约为40%。【结论】综合以上结果,表明菌根化苗能够在一定程度上减轻根结线虫病的危害。土壤灭菌条件下,在感病和抗线虫番茄品种上接种AMF能够减轻线虫的侵染和繁殖,而且在感病品种上的防治效果更加显著。在连作土壤中,在番茄感病品种上接种AMF也表现较好的抗线虫效果。  相似文献   

6.
The root-knot nematode, Meloidogyne incognito (Kofoid et White) Chitwood is an important pathogen of vegetables. Five commercial cultivars of lettuce (Lactuca sativa L.) were evaluated under greenhouse conditions for resistance to Meloidogyne incognita, Benguet population. Plants were inoculated with 1000 eggs collected from 'Apollo' tomato (Lycopersicon esculentum) roots. The degree of galling and number of egg masses were assessed 4 and 8 weeks after inoculation. Host plant response was classified as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, and highly susceptible based on the resistance index of Kouamè et at., 1998 [RI = (gall2 + egg2)]. Inoculation of 1000 eggs/plant significantly affected the growth and yield of the five lettuce cultivars 4 and 8 weeks after inoculation. A significant interaction was observed between treatment and cultivar during the two evaluation periods in terms of marketable and non-marketable yield, plant height, root weight, number of galls and number of egg masses. A reduction in growth and yield was observed in the cultivars Ballon, Lollo Rosa and Red Wave. Significant differences were noted in the number of galls and egg masses among the different cultivars tested. The highest average number of galls was obtained from the cultivars Red Wave, Ballon and Lollo Rosa. Cultivar Ballon had the highest average number of recovered nematode while Gilaben had the lowest with 15 and 4 per roots, respectively after 4 weeks inoculation. After 8 weeks, nematode was highest in cultivar Red Wave (615) and lowest in Great Lakes (70). Based on the host response, cultivars Great Lakes and Gilaben were rated highly resistant and resistant, respectively, while Red Wave, Ballon and Lollo Rosa were rated intermediate.  相似文献   

7.
Poch HL  López RH  Clark SJ 《Annals of botany》2007,99(6):1223-1229
BACKGROUND AND AIMS: Knowledge of host factors affecting plant-nematode interactions is scarce. Here, relevant interaction phenotypes between a nodulating model host, Lotus japonicus, and the endoparasitic root-knot nematode Meloidogyne incognita are assessed via a genetic screen. METHODS: Within an alpha experimental design, 4-week-old replicate plants from 60 L. japonicus ecotypes were inoculated with 1000 nematodes from a single egg mass population, and evaluated for galling and nematode egg masses 6 weeks after inoculation. KEY RESULTS: Statistical analysis of data for 57 ecotypes showed that ecotype susceptibilities ranged from 3.5 to 406 galls per root, and correlated strongly (r = 0.8, P < 0.001, log scale) with nematode reproduction (ranging from 0.6 to 34.5 egg masses per root). Some ecotypes, however, showed a significant discrepancy between disease severity and nematode reproduction. Necrosis and developmental malformations were observed in other infected ecotypes. CONCLUSIONS: The first evidence is provided of significant variability in the interactions between L. japonicus and root-knot nematodes that may have further implications for the genetic dissection and characterization of host pathways involved in nematode parasitism and, possibly, in microbial symbiosis.  相似文献   

8.
Abstract Free living nematode Caenorhabditis elegans was used as a test system for screening anthelmintic phenolics. The most effective concentrations (100, 500 and 1000 μg ml−1) were used against root knot nematode Meloidogyne incognita. Effect of these phenolics was determined on growth and development of host plant Capsicum frutescens cv. California Wonder, Second stage juveniles of M. incognita were hatched from egg masses collected from roots of host plant and subjected to similar phenol concentrations for 48 h. Mortality of M. incognita was recorded on the basis of parameters used for test organism bioassay. Both healthy and inoculated plants of C. frutescens cv. California Wonder were treated withsolutions of salicylic acid (SA) and p-betahydroxy benzoic acid (BA) so that each pot received 100, 500 and 1000 mg phenol. Control plants were supplied with distilled water, Plants were uprooted 21 days after inoculation and roots were gall indexed. Some plants were left in the pots for further growth and development. Surface sterilised seedlings of host plant were raised and inoculated with second stage Juveniles of M. incognita. Thereafter observations were recorded on the vegetative and reproductive parameters of the plants. Drench application of SA and BA were found quite effective with no apparent phytotoxic effect.  相似文献   

9.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

10.
The fungus Pochonia chlamydosporia is a potential biological control agent for plant parasitic nematodes, but to date, there has been little investigation of interactions (competitive, antagonistic or synergistic) between different isolates that occur together on roots and nematode galls. Real-time quantitative PCR (qPCR) has greatly improved the study of many fungi in situ on plant and nematode hosts, but distinguishing closely related isolates remains difficult. In this study, primers to discriminate P. chlamydosporia var. chlamydosporia and P. chlamydosporia var. catenulata were used to measure the relative abundance of isolates of the two varieties when inoculated singly or together on tomato plants. Also, sequence-characterised amplified polymorphic regions were identified to distinguish two different isolates of P. chlamydosporia var. chlamydosporia . Individual 1-cm root segments and nematode galls were excised, DNA extracted and subjected to real-time qPCR with the discriminatory primers. The qPCR method proved sensitive and reproducible and demonstrated that roots and nematode galls were not uniformly colonised by the fungi. Results indicated that the P. chalmydosporia var. catenulata isolate was more abundant on roots and eggs than P. chlamydosporia var. chlamydosporia , but all the isolates infected a similar proportion of nematode eggs. There was an indication that the abundance of each fungal isolate was reduced in co-inoculation experiments compared with single inoculations, but the number of root segments and galls colonised was not statistically significantly different.  相似文献   

11.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

12.
Root-knot nematodes of the genus Meloidogyne are important pathogens affecting vegetable crop production in Brazil and worldwide. The pepper species Capsicum annuum includes both hot and sweet peppers; very little emphasis has been placed on breeding sweet peppers for nematode resistance. We report on the inheritance of resistance to Meloidogyne incognita (Kofoid & White) Chitwood race 2 in the hot pepper cultivar Carolina Cayenne. The hot pepper cv. Carolina Cayenne was used as seed parent and the sweet pepper cv. Agron?mico-8 was used as pollen parent to obtain the F(1) and F(2) generations and the backcross generations BC(11) and BC(12). The plants were inoculated with M. incognita race 2 at a rate of 60 eggs/ml of substrate and, after a suitable incubation period, the numbers of root galls and egg masses per root system were evaluated on each plant. Broad- (0.77 and 0.72) and narrow-sense (0.77 and 0.63) heritability estimates were high for both root galls and egg masses, respectively. The mean degree of dominance was estimated as 0.29 and 0.25 for numbers of galls and egg masses, respectively; these estimates were not significantly different from 0, indicating a predominantly additive gene action. The results were consistent with a hypothesis of monogenic resistance in Carolina Cayenne.  相似文献   

13.
The egg pathogenic fungus Paecilomyces lilacinus (strain 251) is a biocontrol fungus with a potential range of activity to control the worldwide most important plant parasitic nematodes. This biological nematicide may be an useful tool in an integrated approach to control mainly sedentary nematodes. Greenhouse experiments were conducted with the root-knot nematodes Meloidogyne incognita and M. hapla on tomato. P. lilacinus, formulated as WG (BIOACT WG), was incorporated into soil inoculated with root-knot nematode eggs prior to transplanting the susceptible tomato cultivar "Hellfrucht". Furthermore, soil treatments were combined with seedling treatments 24 hours before transplanting and a soil drench 2 weeks after planting, respectively. Seedling and post planting treatment was also combined with a soil treatment at planting. All single or combination treatments tested decreased the gall index and the number of egg masses compared to the untreated control 12 weeks after planting. However, the combination of the seedling treatment with a pre- or at-planting application of P. lilacinus was necessary to achieve higher levels of control. Additional post plant drenching resulted in only a slight increase In efficacy. To the feasibility of this modified application system for the control of root-knot nematodes, a yield experiment was conducted with M. hapla and the susceptible cultivar "Gnom F1 Hybrid". It could be demonstrated that the above mentioned combination of pre-planting application plus the seedling and one post plant drench gave the best control and resulted in a significant fruit yield increase in concurrence with a decrease in number of galls per root.  相似文献   

14.
A fungal parasite was isolated from black - coloured egg masses of Meloidogyne javanica on tomato roots . The fungus did not sporulate on any of the culture media tested or in the egg mass . Hyphal characteristics suggest that it is similar to the hyphomycete genus Scytalidium. Hyphae of the Scytalidium- like fungus (CBS 645 . 97 and IMI 368886) proliferated in the gelatinous matrix of the egg mass and penetrated the eggshell via a penetration peg . Parasitism of the egg mass greatly lowered the hatch rate of M. javanica juveniles in vitro. Application of the fungus to soil did not inhibit juvenile penetration into tomato roots . However , the nematode population in soil treated with the fungus was lower than in non - treated soil after one nematode generation . The exact identification of the Scytalidium like fungus , technology for mass production and its application in the field for control of root - knot nematodes requires further investigation .  相似文献   

15.
An experiment was conducted to test the effect of different doses of 2, 4 and 8?g/2?kg of soil of Pochonia chlamydosporia against the root-knot nematode (Meloidogyne incognita) on Phaseolus vulgaris. It was observed that inoculation of plant with the nematode alone, and 15?days prior to fungal inoculation, reduced the plant growth when compared with the plant with fungal application followed by the nematode. Plant length, fresh and dry weight, chlorophyll, carotenoid, protein contents and nitrate reductase activity decreased in nematode-infested plants. Application of higher dose of 8?g/2?kg of soil of P. chlamydosporia increased all the plant growth parameters as well as biochemical parameters. Highest number of galls per root system was recorded on the plants infested with nematode but not treated with the fungus. However, application of fungus prior to nematode inoculation improved the plant growth and reduced the number of galls and the number of egg masses per root system.  相似文献   

16.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

17.
The plant parasitic nematode Meloidogyne incognita is as an obligate parasite entirely dependent on the plants solute supply. Therefore, the nematodes induce the formation of several giant cells which are embedded into root galls. At present only little information is available about the solute transfer mechanisms of the plants to supply the induced galls and giant cells and consequently the nematodes. In the present work we could show by phloem-loading experiments that giant cells in the roots of Arabidopsis thaliana are not symplasmically connected to the phloem elements, thus differing considerably form the comparable plant–nematode interaction of Arabidopsis and Heterodera schachtii . Consequently the gene expression of the sucrose transporter AtSUC4 ( AtSUT4 ) was studied during nematode development, and its functionality was shown using RNAi gene silencing lines.  相似文献   

18.
Seaweed concentrate (SWC), prepared fromEcklonia maxima, when applied as a soil drench to tomato seedlings, significantly increased plant growth and reduced infestation byMeloidogyne incognita. Foliar applied SWC had little effect on plant growth and increased nematode galling. Ashing SWC reduced the suppressive effect on nematode infestation. In anin vitro experiment, SWC lessened infestation of root-knot nematodes on excised roots of a susceptible cultivar of tomato. Application of the same concentrations of SWC to a nematode-resistant cultivar increased the number of egg masses.  相似文献   

19.
Six amino acids viz. DL-methionine, DL-valine, DL-serine, DL-phenylalanine, L-proline and L-histidine were tested against root knot of tomato caused by Meloidogyne javanica. All amino acids showed significant response in plant growth characters with corresponding reduction in the number of galls, adult females, egg masses and juvenile stages within the treated plants. DL-phenylalanine gave significantly higher response in reducing the hatch of egg masses and survival of juveniles in in vitro test compared to control. The highest plant growth and maximum reduction of galling incidence of tomato were recorded in the DL-phenylalanine- treated plants followed by L-proline and L-histidine. All the amino acids gave positive response in suppressing the development of the nematode in the treated plants.  相似文献   

20.
《环境昆虫学报》2013,35(5):603-609
有害生物为害植物后可以诱导后者产生防御抗性,进而对同株植物上其它生物产生一定的负面影响。本文以蔬菜生产中的两大重要有害生物——南方根结线Meloidogyne incognita和烟粉虱Bemisia tabaci为研究对象,在实验室内, 利用不同浓度(200头/株、500头/株、1000头/株)的南方根结线虫侵染番茄,分别在侵染后的第3、7、11 d接种烟粉虱,研究南方根结线虫为害番茄后诱导的植物抗性对叶部害虫烟粉虱生长发育及存活等特性的影响。结果表明,受三种浓度的南方根结线虫危害3 d、7 d和11 d后的番茄植株上,与对照植株上相比烟粉虱卵至成虫的发育明显延长;当500头/株和1000头/株浓度南方根结线虫危害3 d 和7 d 后,该番茄植株上烟粉虱的发育历期与对照相比差异达到显著水平,而在南方根结线虫危害11 d的番茄上,尽管烟粉虱发育历期也随接种南方根结线虫浓度的增加而延长,但处理组与对照组之间的发育历期均无显著差异。在南方根结线虫危害3 d、7 d后的番茄上接种烟粉虱,后者卵-成虫的存活率较对照组番茄上明显下降,且差异达到显著水平,而南方根结线虫不同为害时间、不同为害浓度的处理之间对烟粉虱存活率的影响差异并不显著。研究表明,当南方根结线虫与烟粉虱分别在根部和叶部为害同一株植物时,前者通过植物对后者的影响是负面的,二者之间的互作关系应属于拮抗类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号