首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Methods have been developed for the addition of different metal ion species to the three distinct pairs of metal sites (A, B, and C) found in the dimer of apoalkaline phosphatase. This allows the preparation of hybrid alkaline phosphatases in which A and B sites of each monomer contain two different species of metal ion or the A and B sites of one monomer contain the same species of metal ion, while the adjacent monomer contains a second species. The following hybrids have been characterized in detail: (Zn(II)ACd(II)B)2 alkaline phosphatase, (Zn(II)AMg(II)B)2 alkaline phosphatase, (Cd(II)AZn(II)B)2 alkaline phosphatase, and (Zn(II)AZn(II]B)(Cd(II)ACd(II)B) alkaline phosphatase. 31P and, where appropriate, 113Cd NMR have been used to monitor the behavior of the covalent (E-P) and noncovalent (E X P) phosphointermediates and of the A and B metal ions. From the pH dependencies of the E-P in equilibrium E X P in equilibrium E + Pi equilibria, it is clear that A site metal is the dominant influence in dephosphorylation of E-P and may have a coordinated water molecule, which ionizes to ZnOH- at a low pH providing the nucleophile for dephosphorylation. A site metal also serves to coordinate phosphate in the E X P complex. B site metal has a much smaller effect on dephosphorylation rates, although it does dramatically alter the Pi dissociation rate, which is the rate-limiting step for the native enzyme at alkaline pH, and is probably important in neutralizing the charge on the phosphoseryl residue, thus potentiating the nucleophilic attack of the OH- bound at A site. Phosphate dissociation is slowed markedly by replacement of B site zinc by cadmium. There is clear evidence for long range effects of subunit-subunit interactions, since metal ion and phosphate binding at one active center alters the environments of A and B site metal ions and phosphoserine at the other active site.  相似文献   

3.
4.
Metal selectivity of metal-thiolate clusters in rabbit liver metallothionein (MT) 2 has been studied by examining the metal distribution of two similarly sized divalent metal ions, cobalt and zinc, which have different thiolate affinity. The forms of mixed-metal cluster species in (Co/Zn)7-MT generated with different ratios of both metal ions offered to the metal-free protein were investigated using EPR, ultraviolet/visible absorption and MCD spectroscopy. The results demonstrated that the distribution of these metals between the two metal-thiolate clusters is not random. Thus, the EPR absorption intensities of the bound Co(II) ions in the Zn-cluster matrix increased linearly up to a ratio of Co(II)/Zn(II) equivalents of 3:4, with the final EPR intensity of three non-interacting Co(II)-binding sites. This EPR behaviour is consistent with a binding scheme in which one Co(II) ion occupies a metal-binding site within the three-metal cluster and the remaining two Co(II) ions occupy two distinctly separate sites in the four-metal cluster. With four or more Co(II) ions in the cluster matrix, magnetic coupling between adjacent, sulphur-bridged Co(II) ions was observed. In previous studies on mixed-metal clusters in MT formed with Co(II)/Cd(II), Zn(II)/Cd(II) and Cd(II)/Fe(II), changes in the respective cluster volumes were shown to be a significant factor dictating the widely differing metal distributions in these systems. Based on the results of the current study, it is suggested that both the sizes of the two metal ions and their relative affinities towards the cysteine-thiolate ligands are important in the formation of mixed-metal clusters in MT.  相似文献   

5.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

6.
A multiphase model of metal ion species in human interstitial fluid was constructed under physiological conditions. The effect of Pr(III) on Zn(II) species was studied. At the normal conditions, Zn(II) species mainly distribute in [Zn(HSA)], [Zn(IgG)], and [Zn(Cys)2H]+. With the Pr(III) level increased, the apparent competition of Pr(III) for ligands lead to the redistribution of Zn(II) species.  相似文献   

7.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

8.
113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases   总被引:1,自引:0,他引:1  
113Cd NMR spectra of 113Cd(II)-substituted Escherichia coli alkaline phosphatase have been recorded over a range of pH values, levels of metal site occupancy, and states of phosphorylation. Under all conditions resonances attributable to cadmium specifically bound at one or more of the three pairs of metal-binding sites (A, B, and C sites) are detected. By following changes in both the 113Cd and 31P NMR spectra of 113Cd(II)2 alkaline phosphatase during and after phosphorylation, it has been possible to assign the cadmium resonance that occurs between 140 and 170 ppm to Cd(II) bound to the A or catalytic site of the enzyme and the resonance occurring between 51 and 76 ppm to Cd(II) bound to B site, which from x-ray data is located 3.9 A from the A site. The kinetics of phosphorylation show that cadmium migration from the A site of one subunit to the B site of the second subunit follows and is a consequence of phosphate binding, thus precluding the migration as a sufficient explanation for half-of-the-sites reactivity. Rather, there is evidence for subunit-subunit interaction rendering the phosphate binding sites inequivalent. Although one metal ion, at A site, is sufficient for phosphate binding and phosphorylation, the presence of a second metal ion at B site greatly enhances the rate of phosphorylation. In the absence of phosphate, occupation of the lower affinity B and C sites produces exchange broadening of the cadmium resonances. Phosphorylation abolishes this exchange modulation. Magnesium at high concentration broadens the resonances to the point of undetectability. The chemical shift of 113Cd(II) in both A and B sites (but not C site) is different depending on the state of the bound phosphate (whether covalently or noncovalently bound) and gives separate resonances for each form. Care must be taken in attributing the initial distribution of cadmium or phosphate in the reconstituted enzyme to that of the equilibrium species in samples reconstituted from apoenzyme. Both 113Cd NMR and 31P NMR show that some conformational changes consequent to metal ion or phosphate binding require several days before the final equilibrium species is formed.  相似文献   

9.
The Staphylococcus aureus plasmid pI258 CadC is a homodimeric repressor that binds Cd(II), Pb(II), and Zn(II) and regulates expression of the cadAC operon. CadC binds two Cd(II) ions per dimer, with a tetrathiolate binding site composed of residues Cys(7), Cys(11), Cys(58), and Cys(60). It is not known whether each site consists of residues from a single monomer or from residues contributed by both subunits. To examine whether Cys(7) and Cys(11) are spatially proximate to Cys(58) and Cys(60) of the same subunit or of the other subunit, homodimers with the same cysteine mutation in each subunit and heterodimers containing different cysteine mutations in the two subunits were reacted with 4,6-bis(bromomethyl)-3,7-dimethyl-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione, which cross-links thiol groups that are within 3-6 A of each other. Cys(7) or Cys(11) cross-linked only with Cys(58) or Cys(60) on the other subunit. The data demonstrate that Cys(7) and Cys(11) from one monomer are within 3-6 A of either Cys(58) or Cys(60) in the other monomer. The results of this study strongly indicate that each of the two Cd(II) binding sites in the CadC homodimer is composed of Cys(7) and Cys(11) from one monomer and Cys(58) and Cys(60) from the other monomer.  相似文献   

10.
Alkaline phosphatase from Escherichia coli contains three metal binding sites (A, B, and C) located at sites forming a triangle with sides of 4, 5, and 7 A (Wyckoff, H.W., Handschumacher, M., Murthy, K., and Sowadski, J.M. (1983) Adv. Enzymol. 55, 453). When all three sites are occupied by Cd(II) the enzyme has a very low turnover; at least 10(3) slower than the native Zn(II) enzyme. The slow turnover number has made the Cd(II) enzyme useful in NMR studies of the mechanism of alkaline phosphatase. The binding of arsenate to two forms of Cd(II) alkaline phosphatase (Cd(II)2alkaline phosphatase and Cd(II)6alkaline phosphatase) has been studied by 113Cd NMR. Cd(II)2alkaline phosphatase, pH 6.3, binds arsenate at only one monomer of the dimeric enzyme and causes migration of Cd(II) from the A site of one monomer to the B site of the arsenylated monomer. This same migration has previously been observed to accompany metal ion-dependent phosphate binding, but is much more rapid in the case of arsenate. The acceleration of migration induced by arsenate supports the conclusion based on the phosphate data that the substrate anion binds to the A site metal ion of one monomer prior to migration and that only the metal ion at A site is required for phosphorylation (arsenylation) of serine 102. The 113Cd chemical shifts of A and B site metal ions are very sensitive to the form of the bound arsenate, i.e. covalent (E-As) or noncovalent (E X As) complex. Like the analogous phosphate derivatives, the change of chemical shift of A site (to which phosphate is coordinated in the E X P complex) is much greater than that of the B site metal ion, when the arsenate shifts between the two intermediates, suggesting that arsenate is also coordinated to A site in the E X As intermediate. The chemical shifts of A and B site 113Cd(II) ions are considerably different in the arsenate and phosphate derivatives, while the C site 113Cd(II) ions have nearly identical chemical shifts. Thus the substrate appears to interact closely with both A and B sites, while C site appears relatively unimportant in phosphomonoester hydrolysis. The analogous behavior of arsenate and phosphate at the active center as evaluated by 113Cd NMR supports the validity of using the heavier arsenate derivative in x-ray diffraction studies.  相似文献   

11.
Zinc, a metal ion that functions in a wide variety of catalytic and structural sites in metalloproteins, is shown here to adopt a novel coordination environment in the Escherichia coli transport protein ZntA. The ZntA protein is a P-type ATPase that pumps zinc out of the cytoplasm and into the periplasm. It is physiologically selective for Zn(II) and functions with metalloregulatory proteins in the cell to keep the zinc quota within strict limits. Yet, the N-terminal cytoplasmic domain contains a region that is highly homologous to the yeast Cu(I) metallochaperone Atx1. To investigate how the structure of this region may influence its function, this fragment, containing residues 46-118, has been cloned out of the gene and overexpressed. We report here the solution structure of this fragment as determined by NMR. Both the apo and Zn(II)-ZntA(46-118) structures have been determined. It contains a previously unknown protein coordination site for zinc that includes two cysteine residues, Cys59 and Cys62, and a carboxylate residue, Asp58. The solvent accessibility of this site is also remarkably high, a feature that increasingly appears to be a characteristic of domains of heavy metal ion transport proteins. The participation of Asp58 in this ZntA metal ion binding site may play an important role in modulating the relative affinities and metal exchange rates for Zn(II)/Pb(II)/Cd(II) as compared with other P-type ATPases, which are selective for Cu(I) or Ag(I).  相似文献   

12.
13.
14.
Liu T  Golden JW  Giedroc DP 《Biochemistry》2005,44(24):8673-8683
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).  相似文献   

15.
The binding of Ag- and Cd-substituted plastocyanin to reduced photosystem 1 of spinach has been studied through the rotational correlation time of plastocyanin measured by the technique of perturbed angular correlation of gamma-rays (PAC). Ag and Cd are used as models for native Cu(I) and Cu(II), respectively. A dissociation constant of 5 microM was found for Ag-plastocyanin, whereas the dissociation constant was at least 24 times higher for Cd-plastocyanin. PAC was further used to characterize the structure of the metal site of Cd- and Ag-plastocyanin. The Cd spectra are characteristic of a planar configuration of one cysteine and two histidines. However, the spectra show an unusual peak broadening and a high degree of internal motion, interpreted as motion of one of the histidines within the plane. (111)Ag decays to (111)Cd, followed by the emission of two gamma-rays used for the PAC experiment. The (111)Ag PAC spectra indicate that one of the coordinating histidines has a different position in the Ag protein than in the Cd protein but that the decay of Ag to Cd causes a relaxation of the position of this histidine to the position in the Cd protein within 20 ns. Binding of Ag-plastocyanin to photosystem I stabilized the Ag metal site structure so that no relaxation was observed on a time scale of 100 ns. This stabilization of the Ag structure upon binding indicates that the metal site structure is involved in regulating how the dissociation constant for plastocyanin depends on the charge of the metal ion.  相似文献   

16.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

17.
 The paramagnetic 1H NMR spectra of the Co(II) and Ni(II) substituted forms of the type 1 blue copper protein (cupredoxin) amicyanin have been assigned. This is the first such analysis of a cupredoxin, which has a distorted tetrahedral active site with the ligands provided by two histidines, a cysteine and a methionine. The isotropic shifts of the resonances in these spectra are compared with those of Co(II) and Ni(II) azurin. A number of interesting similarities and differences are found. The coordination of the metal by the two equatorial histidine ligands is very similar in both proteins. The interaction between the introduced metal and the thiolate sulfur of the equatorial cysteine ligand is enhanced in the amicyanin derivatives. Resonances belonging to the weak axial methionine ligand exhibit much larger shifts in the amicyanin derivatives, indicative of shorter M(II)-S(Met) distances. The presence of shorter axial M(II)-S(Met) and equatorial M(II)-S(Cys) distances in both Co(II) and Ni(II) amicyanin is ascribed to the absence of a second axially interacting amino acid at the active site of this cupredoxin. Received: 2 February 1999 / Accepted: 19 May 1999  相似文献   

18.
Detailed investigations of a serum peptide (less than Glu1-Ala2-Lys3-Ser4-Gln5-Gly6-Gly7-Ser8-++ +Asn9) were carried out by 1H and 13C NMR spectroscopy to elucidate the structure of the complex formed with Zn(II), thymulin, which has been found to be active in vivo. These experiments were performed in dimethyl sulfoxide-d6 solution at different metal:peptide ratios. The results suggest the following conclusions. (i) The Zn(II) complexation corresponds to a fast exchange on the NMR time scale. (ii) The evolution of 1H and 13C NMR chemical shifts indicates the existence of two types of complexes: a 1:2 species associating two peptide molecules and one Zn(II) ion and a complex with 1:1 stoichiometry. The former is predominant for metal:peptide ratios below unity. (iii) In the 1:2 complex, Zn(II) is coordinated by the Ser4-O gamma H and Asn9-CO2- sites, while in the 1:1 complex, Ser8-O gamma H is the third ligand to the Zn(II) ion. The results are compared with those for the [Ala4] and [Ala8] analogues, and those for the complexes of thymulin with other metal ions (Cu2+ and Al3+) in terms of its biological activity. These comparative studies suggested that the 1:1 complex is the only conformation recognized by the antibodies.  相似文献   

19.
We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-stranded alpha-helix bundle, as revealed by circular dichroism (CD) spectroscopy and sedimentation equilibrium analysis. By titration with metal ions and monitoring the change in the intensity of the CD spectra at 222 nm, the dissociation constant Kd was determined to be 1.5 +/- 0.8 microM for Cd(II). The triple-stranded complex formed by the 113Cd(II) ion showed a single 113Cd NMR resonance at 572 ppm whose chemical shift was not affected by the presence of Cl- ions. The 113Cd NMR resonance was connected with the betaH protons of the cysteine residue by 1H-113Cd heteronuclear multiple quantum correlation spectroscopy. These NMR results indicate that the three cysteine residues are coordinated to the cadmium ion in a trigonal-planar complex. Hg(II) also induced the assembly of the peptide into a triple-stranded alpha-helical bundle below the Hg(II)/peptide ratio of 1/3. With excess Hg(II), however, the alpha-helicity of the peptide was decreased, with the change of the Hg(II) coordination state from three to two. Combining this construct with other functional domains should facilitate the production of artificial proteins with functions controlled by metal ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号