首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.  相似文献   

2.
A Role for Caspases in Lens Fiber Differentiation   总被引:13,自引:0,他引:13       下载免费PDF全文
There is increasing evidence that programmed cell death (PCD) depends on a novel family of intracellular cysteine proteases, called caspases, that includes the Ced-3 protease in the nematode Caenorhabditis elegans and the interleukin-1β–converting enzyme (ICE)-like proteases in mammals. Some developing cells, including lens epithelial cells, erythroblasts, and keratinocytes, lose their nucleus and other organelles when they terminally differentiate, but it is not known whether the enzymatic machinery of PCD is involved in any of these normal differentiation events. We show here that at least one CPP32 (caspase-3)-like member of the caspase family becomes activated when rodent lens epithelial cells terminally differentiate into anucleate lens fibers in vivo, and that a peptide inhibitor of these proteases blocks the denucleation process in an in vitro model of lens fiber differentiation. These findings suggest that at least part of the machinery of PCD is involved in lens fiber differentiation.  相似文献   

3.
Embryonic stem (ES) cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES) that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.  相似文献   

4.
5.
6.
7.
Baculovirus p33 Binds Human p53 and Enhances p53-Mediated Apoptosis   总被引:3,自引:2,他引:1       下载免费PDF全文
In vertebrates, p53 participates in numerous biological processes including cell cycle regulation, apoptosis, differentiation, and oncogenic transformation. When insect SF-21 cells were infected with a recombinant of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) overexpressing human p53, p53 formed a stable complex with the product of the AcMNPV orf92, a novel protein p33. The interaction between p53 and p33 was further confirmed by immunoprecipitation studies. When individually expressed in SF-21 cells, human p53 localized mainly in the nucleus whereas baculovirus p33 displayed diffuse cytoplasmic staining and punctuate nuclear staining. However, coexpression of p33 with p53 resulted in exclusive nuclear localization of p33. In both SF-21 and TN-368 cells, p53 expression induced typical features of apoptosis including nuclear condensation and fragmentation, oligonucleosomal ladder formation, cell surface blebbing, and apoptotic body formation. Coexpression of p53 with a baculovirus inhibitor of apoptosis, p35, OpIAP, or CpIAP, blocked apoptosis, whereas coexpression with p33 enhanced p53-mediated apoptosis approximately twofold. Expression of p53 in SF-21 cells stably expressing OpIAP inhibited cell growth in the presence or absence of p33. Thus, human p53 can influence both insect cell growth and death and baculovirus p33 can modulate the death-inducing effects of p53.  相似文献   

8.
During the course of their differentiation, embryonic lens fibers undergo loss of their cytoplasmic organelles and nuclei. The denucleation process bears similarities to the nuclear breakdown that occurs during apoptosis. This has given rise to the hypothesis that this denucleation is analogous to apoptosis, but without the plasma membrane changes characteristic of apoptotic cell death. Previous work has shown that several members of the apoptotic cascade are active during denucleation. Here, we have overexpressed the anti-apoptotic molecule bcl-2 in developing lenses of the 8-day-old chick embryo in ovo, using the replication-competent retrovirus RCAS. We find that lenses overexpressing bcl-2 show varying degrees of distortion in comparison with untreated and negative insert controls, including a more spherical shape and disorganized fiber cells. All overexpressing lenses showed significantly higher numbers of smaller nuclei in the lens core, where denucleation begins. There was no change in cell size or pattern of proliferation. These in vivo results were confirmed in vitro using lens epithelial cell cultures, which differentiate into lentoids. The lentoids in treated cultures showed the same effect on nuclear number and size. We further found that in lenses overexpressing bcl-2 there was a reduction in the activation of caspase-9 and the cleavage of the caspase substrate DFF45, and, in the lens core, a failure of the nuclear chromatin to condense. These results provide strong support for the view that embryonic lens fiber cell denucleation is analogous to the nuclear degradation that occurs during apoptosis, and that similar control pathways are involved in both these phenomena.  相似文献   

9.
10.
11.
Embryonic stem cells (ESCs) differentiate in vivo and in vitro into all cell lineages, and they have been proposed as cellular therapy for human diseases. However, the molecular mechanisms controlling ESC commitment toward specific lineages need to be specified. We previously found that the p38 mitogen-activated protein kinase (p38MAPK) pathway inhibits neurogenesis and is necessary to mesodermal formation during the critical first 5 days of mouse ESC commitment. This period corresponds to the expression of specific master genes that direct ESC into each of the three embryonic layers. By both chemical and genetic approaches, we found now that, during this phase, the p38MAPK pathway stabilizes the p53 protein level and that interfering directly with p53 mimics the effects of p38MAPK inhibition on ESC differentiation. Anti-p53 siRNA transient transfections stimulate Bcl2 and Pax6 gene expressions, leading to increased ESC neurogenesis compared with control transfections. Conversely, p53 downregulation leads to a strong inhibition of the mesodermal master genes Brachyury and Mesp1 affecting cardiomyogenesis and skeletal myogenesis of ESCs. Similar results were found with p53−/− ESCs compared with their wild-type counterparts. In addition, knockout p53 ESCs show impaired smooth muscle cell and adipocyte formation. Use of anti-Nanog siRNAs demonstrates that certain of these regulations result partially to p53-dependent repression of Nanog gene expression. In addition to its well-known role in DNA-damage response, apoptosis, cell cycle control and tumor suppression, p53 has also been involved in vivo in embryonic development; our results show now that p53 mediates, at least for a large part, the p38MAPK control of the early commitment of ESCs toward mesodermal and neural lineages.  相似文献   

12.
Galectin-7 was initially described as a marker of epithelial differentiation expressed in the stratified epithelium of various tissues. Like other members of the galectin family, its expression level is often significantly altered in cancer cells. In breast cancer, its expression is significantly augmented in aggressive molecular subtypes, most notably in estrogen receptor-negative tumors and in cell lines with a basal-like phenotype. Studies using experimental mouse models have further shown high expression of galectin-7 was sufficient to increase the metastatic behavior of poorly metastatic breast cancer cells, rendering them more resistant to apoptosis. This expression pattern in breast cancer cells is unexpected because galectin-7 was originally identified as a p53-induced gene. To address this paradox, we have examined the molecular mechanisms regulating galectin-7 in breast cancer cells. Our results showed that transfection of breast cancer cells with expression vectors encoding mutant p53 was sufficient to induce galectin-7 at both mRNA and protein levels. Doxorubicin treatment of breast cancer cells harboring a mutant p53 also induced galectin-7. This induction was specific since knockdown of endogenous mutant p53 inhibited doxorubicin-induced galectin-7 expression. The p53-induced galectin-7 expression in breast cancer cells correlated with increased NF-κB activity and was inhibited by NF-κB inhibitors, indicating that the ability of mutant p53 to induce galectin-7 was dependent on NF-κB activity. The implication of NF-κB was further supported by data showing that NF-κB bound to the endogenous galectin-7 promoter and that TNFα-induced galectin-7 expression was abolished by NF-κB inhibitors. Taken together, our data provide an explanation to the observed high galectin-7 expression levels in cancer cells and suggest that galectin-7 could be part of a common pathway used by mutant p53 to promote cancer progression.  相似文献   

13.
14.
Deng M  Chen P  Liu F  Fu S  Tang H  Fu Y  Xiong Z  Hui S  Ji W  Zhang X  Zhang L  Gong L  Hu X  Hu W  Sun S  Liu J  Xiao L  Liu WB  Xiao YM  Liu SJ  Liu Y  Li DW 《Current molecular medicine》2012,12(8):901-916
The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells (Qin et al. 2008. Cancer Research. 68(11):4150) and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Here, we demonstrate that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. First, during mouse lens development, p53 is expressed and differentially phosphorylated at different residues. Associated with p53 expression, Bak is also significantly expressed during mouse lens development. Second, human p53 directly regulates Bak promoter and Bak expression in p53 knockout mice (p53-/-) was significantly downregulated. Third, during in vitro bFGF-induced lens cell differentiation, knockdown of p53 or Bak leads to significant inhibition of lens cell differentiation. Fourth, besides the major distribution of Bak in cytoplasm, it is also localized in the nucleus in normal lens or bFGF-induced differentiating lens cells. Finally, p53 and Bak are co-localized in both cytoplasm and nucleus, and their interaction regulates the stability of p53. Together, these results demonstrate for the first time that the p53-Bak apoptotic signaling axis plays an essential role in regulating lens differentiation.  相似文献   

15.
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.  相似文献   

16.
Down syndrome (DS) is associated with many neural defects, including reduced brain size and impaired neuronal proliferation, highly contributing to the mental retardation. Those typical characteristics of DS are closely associated with a specific gene group “Down syndrome critical region” (DSCR) on human chromosome 21. Here we investigated the molecular mechanisms underlying impaired neuronal proliferation in DS and, more specifically, a regulatory role for dual-specificity tyrosine-(Y) phosphorylation-regulated kinase 1A (Dyrk1A), a DSCR gene product, in embryonic neuronal cell proliferation. We found that Dyrk1A phosphorylates p53 at Ser-15 in vitro and in immortalized rat embryonic hippocampal progenitor H19-7 cells. In addition, Dyrk1A-induced p53 phosphorylation at Ser-15 led to a robust induction of p53 target genes (e.g. p21CIP1) and impaired G1/G0-S phase transition, resulting in attenuated proliferation of H19-7 cells and human embryonic stem cell-derived neural precursor cells. Moreover, the point mutation of p53-Ser-15 to alanine rescued the inhibitory effect of Dyrk1A on neuronal proliferation. Accordingly, brains from embryonic DYRK1A transgenic mice exhibited elevated levels of Dyrk1A, Ser-15 (mouse Ser-18)-phosphorylated p53, and p21CIP1 as well as impaired neuronal proliferation. These findings suggest that up-regulation of Dyrk1A contributes to altered neuronal proliferation in DS through specific phosphorylation of p53 at Ser-15 and subsequent p21CIP1 induction.  相似文献   

17.
18.
19.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号