首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 921 毫秒
1.
为探讨去除/保留凋落物对林窗内外杉木人工林土壤呼吸的影响、明确去除/保留凋落物条件下杉木人工林林窗内外土壤呼吸主要影响因子,改进经营管理措施和保持杉木人工林的可持续发展,在福州白沙国有林场内选取本底基本相同和经营措施接近的12年生杉木人工林及其林窗,分别采用去除和保留凋落物处理,在每月晴好天气通过Licor-8100A对其凋落物量、土壤呼吸、土壤温度、湿度进行了1a(2014年3月—2015年2月)的定点观测,在此基础上分析不同凋落物输入量处理下杉木人工林窗内外土壤呼吸与环境因子的动态特征、土壤呼吸和环境因子关系,结合方差分析等解释土壤呼吸的拟合模型,结果表明:1)杉木林林窗、林内土壤呼吸速率年平均值分别为2.47μmol m~(-2)s~(-1)和2.13μmol m~(-2)s~(-1);去除凋落物后,分别减少了22.89%、25.89%;林窗内外均是7月份出现最大值,去除凋落物后分别为(3.65±0.14)μmol m~(-2)s~(-1)和(2.85±0.08)μmol m~(-2)s~(-1);保留凋落物分别为(4.26±0.34)μmol m~(-2)s~(-1)和(3.61±0.34)μmol m~(-2)s~(-1);1月值最小,去除凋落物分别为(0.9±0.04)μmol m~(-2)s~(-1)和(0.83±0.03)μmol m~(-2)s~(-1),保留凋落物分别为(1.02±0.041)μmol m~(-2)s~(-1)和(0.92±0.05)μmol m~(-2)s~(-1)。2)土壤温度和湿度共同解释了杉木人工林林窗内外土壤呼吸68.63%—77.28%;3)林窗、林内去除和保留凋落物处理的土壤呼吸与土壤5cm深的温、湿度间显著相关;4)林窗、林内土壤温、湿度的双因素模型均比单因素模型能更好地解释土壤呼吸的动态变化。林窗、林内去除凋落物的土壤呼吸温度敏感系数Q10值分别为1.39和1.37,差异不显著(P=0.634);保留凋落物的Q10值分别为1.40和1.55,差异显著(P=0.010)。研究结果为揭示杉木人工森林生态系统碳通量以及其驱动机制提供理论基础。  相似文献   

2.
中度火干扰对兴安落叶松林土壤呼吸的影响   总被引:3,自引:0,他引:3  
胡同欣  胡海清  孙龙 《生态学报》2018,38(8):2915-2924
通过测定中度火干扰后塔河地区兴安落叶松(Larix gmelinii)林生长季土壤呼吸(R_s),并进一步探究火干扰后影响土壤呼吸变化的主要环境因子。选择在塔河林业局火烧4年后兴安落叶松林中度火烧迹地设置样地,选择临近未过火区域设置对照样地。土壤呼吸通量用LI-8100进行测量,土壤异养呼吸(R_h)采用壕沟法进行测量。火烧迹地与未火烧对照样地生长季土壤呼吸速率平均值分别为(3.67±1.03)μmol CO_2m~(-2)s~(-1),(4.21±1.25)μmol CO_2m~(-2)s~(-1)。火烧迹地土壤呼吸速率显著降低(P0.05)。生长季土壤呼吸组分的动态变化表明,土壤呼吸速率的降低是因为土壤自养呼吸(R_a)显著降低导致的(P0.05)。温度是控制这一地区生长季土壤呼吸变化的主要环境因子。与对照样地相比,火烧迹地土壤呼吸的变化与土壤温度具有更强的相关性。塔河地区兴安落叶松林火烧迹地和未火烧对照样地Q_(10)分别为5.85±1.06,4.25±1.19,火干扰后Q_(10)显著增加(P0.05)。研究结果表明:在全球气候变化的背景下火干扰后中国塔河地区兴安落叶松林生态系统对温度的变化更为敏感。本研究结果将为研究中国塔河地区火干扰后碳循环变化提供数据支持。  相似文献   

3.
苔藓和凋落物对祁连山青海云杉林土壤呼吸的影响   总被引:2,自引:0,他引:2  
于2012—2014年生长季在青海云杉林下开展了地表覆盖物(苔藓和凋落物)对林下土壤呼吸速率影响的研究。采用LI8100土壤碳通量自动测量系统对苔藓覆盖、凋落物覆盖和裸土(去除地表覆盖物)的土壤呼吸进行观测,对比分析林下3种覆盖处理下的土壤呼吸差异。结果表明:苔藓覆盖土壤、凋落物覆盖土壤和裸土土壤的呼吸速率年均值分别为(3.88±0.26)μmol m~(-2)s~(-1),(3.31±0.19)μmol m~(-2)s~(-1),(2.28±0.31)μmol m~(-2)s~(-1),三者之间具有极显著差异,3组处理的地表相对湿度、土壤含水量、土壤温度和地表温度间均没有显著差异,但苔藓组和凋落物组的土壤温度分别比裸土组高8.13%和10.24%;3组处理的土壤呼吸速率均与温度呈显著指数相关性(0.53≤R~2≤0.91),且与土壤温度的相关性更高;苔藓覆盖、凋落物覆盖土壤呼吸的温度敏感性(Q_(10))分别为5.47,3.67,均高于裸土土壤呼吸的Q_(10)(2.23);裸土土壤呼吸与土壤含水量(VWC)呈高斯函数关系,VWC=34%是临界值,苔藓覆盖、凋落物覆盖土壤的呼吸速率与土壤含水量均呈线性负相关关系;苔藓和凋落物对裸土土壤呼吸的月均贡献率分别为29.33%和24.06%,可见,苔藓和凋落物在青海云杉林生态系统呼吸中起重要作用。  相似文献   

4.
为探讨森林生态系统植被、土壤等不同组分与大气CO_2交换特点,利用中型同化箱(40cm×40cm×2Ocm)及红外CO_2分析仪装置对北京山区典型暖温带森林生态系统辽东栎(Quercus liaotungensisKoidz.)林草本层净光合作用、土壤释放CO_2及林外(高出林冠2m)与林内(低于林冠2m)大气CO_2变化进行测定。结果表明:夏季及秋季大气CO_2浓度分别为(323±10)μmol·mol~(-1)和(330±1)μmol·mol~(-1);在一天内连续24h的测定中,大气与林内CO_2浓度的差值最大时可分别达-46和-61μmol·mol~(-1)。夏季草本层净光合强度为(2.59±1.05)μmol CO_2·m~(-2)·s~(-1),是秋季((1.31±0.39)μmol CO_2·m~(-2)·s~(-1))的2倍;夏季土壤呼吸释放CO_2的强度明显高于秋季,分别为(5.18±0.75)μmol CO_2·m~(-2)·s~(-1)和(1.96±0.57)μmol CO_2·m~(-2)·s~(-1)。土壤释放CO_2强度与地面温度之间存在显著相关,其关系式为Y=-0.8642 0.3101X(r=0.7164,P<0.001,n=117)。大气CO_2浓度的低值及草本层光合强度高值约出现在14:00左右;而在夜间土壤释放CO_2强度增加,表现为大气CO_2浓度升高。  相似文献   

5.
南京城市公园绿地不同植被类型土壤呼吸的变化   总被引:9,自引:0,他引:9  
子2007年10月-2008年9月,利用Li-6400便携式光合作用仪配合土壤呼吸气室对南京中山植物园内草坪、疏林和近自然林3种植被类型的土壤呼吸速率的季节变化及其影响因子进行了测定.结果表明:不同植被类型土壤呼吸速率具有明显的季节变化,夏季(8月)较高,近自然林、疏林和草坪类型分别为3.28、4.07和7.58 μmol·m~(-2)·s~(-1),冬季(12月)最低,近自然林、疏林和草坪类型分别为0.82、0.99和1.42 μmol·m~(-2)·s~(-1);不同植被类型的年均土壤呼吸速率有显著差异(P<0.05),平均土壤呼吸速率大小排序为草坪>疏林>近自然林;不同植被类型的土壤呼吸速率与土壤温度呈显著性指数相关关系,与土壤含水率无显著相关关系;Q_(10)值均随着土层深度的增加而增加;不同植被类型的Q_(10)值存在一定程度的差异,近自然林类型的Q_(10)值大于草坪和疏林类型的Q_(10)值.研究表明,城市如果大量发展草坪可能增加土壤CO_2的排放.
Abstract:
By using Li-6400 portable photosynthetic apparatus connected to soil chamber,the soil respiration rate under three vegetation types(lawn,open woodland,and close-to-nature forest)in Nanjing Zhongshan Botanical Garden was measured from October 2007 to September 2008,with related affecting factors analyzed.The soil respiration rate had obvious seasonal fluctuation,being the highest in summer(August)and the lowest in winter(December).For the close-to-nature forest,open woodland,and lawn,their soil respiration rate in summer was 3.28,4.07,and 7.58μmol·m~(-2)·s~(-1),and that in winter was 0.82,0.99,and 1.42μmol·m~(-2)·s~(-1),respectively.The annual mean soil respiration rate differed significantly with vegetation type(P<0.05),which was in order of close-to-nature forest<open woodland<lawn.The soil respiration rate had significant exponential correlation with soil temperature,but no correlation with soil moisture.The Q_(10) value increased with increasing soil depth,and was larger in close-tonature forest than in open woodland and lawn.Our results indicated that the rapid development of lawn in urban green space could increase the urban soil CO_2 emission.  相似文献   

6.
温带森林不同演替阶段下的土壤CO2排放通量昼间变化   总被引:2,自引:0,他引:2  
采用时空替代法,在长白山北坡分别选取了红松针阔叶混交林演替序列的5个不同阶段:草地、灌木林(幼龄林)地、白桦林地、阔叶杂木林地和红松阔叶林地,进行土壤CO_2排放通量昼间变化野外同步观测研究,旨在揭示温带森林不同演替阶段下的土壤呼吸CO_2排放过程的差异,探究其与温度、湿度、土壤理化性质等环境因子的关系。结果表明:(1)温带森林不同演替阶段下的土壤CO_2排放通量具有统一性,均为大气CO_2的源,这种统一性确保了小的时段(如昼间)观测能通过换算,实现CO_2排放量的估算。(2)CO_2排放通量的昼间排放都呈现出明显的单峰型,峰值在13:00—15:00左右,草地和灌木林地的峰值大概在13:00左右,明显提前于白桦林地、阔叶杂木林地和红松阔叶林地(14:00—15:00左右)。红松阔叶林地的土壤呼吸有明显的滞后性特征,峰值在15:00左右,比其他几个样地明显推迟。(3)土壤CO_2排放通量平均值由低到高排列依次为草地(2.760μmol m~(-2)s~(-1))、灌木林地(2.854μmol m~(-2)s~(-1))、白桦林地(3.048μmol m~(-2)s~(-1))、阔叶杂木林地(3.696μmol m~(-2)s~(-1))、红松阔叶林地(4.61μmol m~(-2)s~(-1))。随着温带森林演替的正向进行,土壤CO_2排放通量依次增大,次序为草地灌木林地白桦林地阔叶杂木林地红松阔叶林地。(4)环境因子中,0—5 cm土壤温度与土壤CO_2排放通量相关系数最高,土壤温度监测对土壤CO_2排放量的估算作用明显。  相似文献   

7.
城市绿地土壤呼吸速率的变化特征及其影响因子   总被引:3,自引:0,他引:3  
吴亚华  肖荣波  王刚  黄柳菁  邓一荣  陈敏 《生态学报》2016,36(22):7462-7471
城市绿地土壤呼吸作用深刻影响着城市生态系统碳循环过程,强化城市绿地土壤呼吸速率(Rs)的变化特征及其影响因素的研究,可揭示绿地在城市生态系统碳循环过程中的作用,为优化布局城市绿地和实现低碳排放目标提供科学依据。以广州市海珠湖公园的疏林、灌丛和草地3种典型植被类型的土壤为研究对象,于2013年11月-2014年10月采用静态箱—气相色谱法对公园绿地Rs进行跟踪观测。结果表明:海珠湖公园城市绿地在干湿季节中Rs差异显著;干季Rs较低且波动幅度较小疏林、灌丛和草地的凡变化范围分别为(1.66±0.18)-(3.26±0.20)μmol m~(-2)s~(-1)、(1.27±0.15)-(3.67±0.16)μmol m~(-2)s~(-1)和(1.94±0.08)-(6.82±1.13)μmol m~(-2)s~(-1);湿季Rs较高且波动幅度较大,疏林、灌丛和草地的Rs变化范围分别为(3.53±0.46)-(13.81±1.31)μmol m~(-2)s~(-1)、(2.82±0.22)-(12.72±1.16)μmol m~(-2)s~(-1)和(2.80±0.30)-(9.83±0.96)μmol m~(-2)s~(-1)。T_(10)和VWC_(10)均对土壤呼吸过程有重要的影响,进一步通过回归分析得出,土壤10cm处温度(T_(10))和体积含水量(VWC_(10))分别解释Rs时间变异的40%左右和10-24%左右。T_(10)和VWC_(10)相互影响、共同作用于土壤呼吸过程,双因素复合模型的解释能力较单因素模型明显提高,均在50%以上,复合模型为Rs=α·exp(β·T_(10)+γ·VWC_(10))。干湿季土壤呼吸的温度敏感性(Q_(10))有明显差异,湿季的Q_(10)比干季的分别高0.44、0.70和0.46。  相似文献   

8.
土壤碳通量是全年性的过程,非生长季土壤碳通量是陆地碳循环的重要组成部分。针对非生长季地上地下CO_2动态变化研究相对缺乏这一现象,对黄河三角洲湿地不同深度土壤CO_2浓度及温度动态变化进行了连续3个月的监测;为揭示该地区地表CO_2通量与地下CO_2浓度变化之间的关系,对地表CO_2通量、土壤CO_2浓度及温度进行了两次同步测定。结果表明:随着土层深度的增加,土壤CO_2浓度显著升高;相同深度下,秋季的土壤CO_2浓度明显高于冬季。地表CO_2通量和地表温度具有相似的日变化规律,二者呈极显著正相关关系,土壤呼吸温度敏感性系数(Q10)为3.49~3.74。地表CO_2通量与土壤CO_2浓度、土壤温度均存在极显著线性或指数关系,利用其经验模型对黄河三角洲湿地土壤秋冬季碳通量进行了估算,通过比较发现,所有模型拟合结果在季节变化上相近:最大值为0.44~0.57μmol·m~(-2)·s~(-1),最小值为-0.18~0.01μmol·m~(-2)·s~(-1),平均值为0.09~0.12μmol·m~(-2)·s~(-1)。本研究揭示了非生长季土壤碳的转化过程对滨海湿地碳循环的潜在影响。  相似文献   

9.
应用小波多尺度分析亚热带森林土壤异养呼吸特征   总被引:1,自引:0,他引:1  
土壤异养呼吸是森林生态系统碳循环的重要组成部分,其时间变化规律和影响因子一直是碳循环研究的难点和重点。利用全自动连续观测系统对亚热带米槠常绿阔叶次生林土壤异养呼吸进行高频率观测,采用连续小波变换技术对高频率实测值与模型估测值间的差值进行分析,探讨亚热带森林土壤异养呼吸的变化机制。结果发现,土壤异养呼吸速率年变化范围在0.82—7.11μmol CO_2 m~(-2)s~(-1)之间,全年平均值为2.66μmol CO_2 m~(-2)s~(-1),在7月份达到全年最高值。虽然土壤温度和水分双因素模型能够较好地解释土壤异养呼吸的年变化,但土壤温度和土壤异养呼吸速率在时间序列上未出现同步变化模式,同时双因素模型估测值与高频率实测值年均值相差18%,其中4—7月模型值低估12%,而8—9月模型值高估15%。进一步利用连续小波变换对模型误差分析发现,模型值与实测值差异在4—7月主要分布在短周期(32—64 h)和长周期(≥85 d),这可能与生长季节土壤底物有效性提高,大量的易变化碳输入激发原有土壤有机碳分解有关。8—9月差异主要分布在长周期(≥85 d),这可能是干旱造成底物有效性降低,微生物只能利用原有难分解有机碳进行维持代谢。因此亚热带森林土壤异养呼吸会不仅受到温度、土壤水分等环境因素影响,而且底物有效性变化也可能是影响亚热带常绿阔叶林土壤异养呼吸变化的重要因素。  相似文献   

10.
寒温带兴安落叶松林凋落物层对土壤呼吸的影响   总被引:1,自引:0,他引:1  
段北星  蔡体久  宋浩  肖瑞晗 《生态学报》2020,40(4):1357-1366
为了进一步探讨土壤凋落物层对土壤呼吸的影响,用Li-6400对大兴安岭北部3种林型(白桦-落叶松林、樟子松-落叶松林和落叶松纯林)自然状态的土壤呼吸(R_S)、去凋落物后的土壤呼吸(R_D)以及凋落物呼吸(R_L)进行测定,结果表明:凋落物层的去除会使土壤呼吸速率降低,3种林型观测期内平均R_S分别为7.32μmol m~(-2) s~(-1)、8.55μmol m~(-2) s~(-1)和6.66μmol m~(-2) s~(-1),平均R_D分别为6.46μmol m~(-2) s~(-1)、7.98μmol m~(-2) s~(-1)和5.74μmol m~(-2) s~(-1)。但去除凋落物后的土壤总呼吸速率较自然状态下分别升高了13.85%、16.21%和13.73%;凋落物的去除并不影响土壤呼吸的季节动态规律,3种林型的R_S和R_D均呈明显的单峰曲线变化规律,峰值均出现在8月,而R_L的季节变化不明显。凋落物的去除对土壤温度和湿度的影响不显著(P0.05),整个观测期3种林型内凋落物去除后平均土壤温度升高了0.11—0.16℃,平均含水量白桦-落叶松林和落叶松林增幅为2.92%和3.10%,而樟子松-落叶松林则下降了16.39%;R_S和R_D均与土壤10 cm温度(T_(10))呈显著正相关,凋落物层的去除使温度对呼吸的影响变大,T_(10)可以解释3种林型R_S和R_D季节变化的49.7%—57.0%和56.7%—61.3%,而土壤10 cm湿度(W_(10))对土壤呼吸的影响均较小,且存在林型间的差异。可见,地表凋落物层是森林土壤呼吸的重要部分,凋落物层的有无对土壤呼吸和土壤温湿度都会产生较大影响,研究凋落物呼吸对于土壤呼吸具有重要意义。  相似文献   

11.
湖南会同林区毛竹林地的土壤呼吸   总被引:5,自引:0,他引:5  
采用CID-301PS光合分析仪(配带土壤呼吸室),对湖南会同林区毛竹林地土壤呼吸进行测定,结果表明,毛竹林地土壤总呼吸速率、异养呼吸速率、自养呼吸速率及凋落物呼吸速率的年平均值分别为2.13、1.44、0.69μmolCO2·m-2·s-1和0.31μmolCO2·m-2·s-1,并呈现明显的季节变化规律和日变化规律,季节变化曲线呈单峰型,表现为1~7月份随着气温、地温的升高呈上升的趋势,在8月达年呼吸速率的最大值,分别达4.95、3.01、1.94μmolCO2·m-2·s-1和0.80 μmolCO2·m-2·s-1,此后随温度的降低而呈逐渐递减的趋势,直到翌年的1月份或2月份,分别为0.76、0.70、 0.06μmolCO2·m-2·s-1 和 0.05μmolCO2·m-2·s-1.日变化曲线图表现为单峰形态,一般也是随着温度的升高而加大,随着温度的降低而减小.6:00~14:00,随着土壤温度的升高而增加,一般在16:00~18:00出现最高峰,此后,一直递减,直到次日4:00~8:00.由此计算出毛竹林地土壤年释放CO2量为33.94 t·hm-2·a-1,其中,林地异养呼吸、自养呼吸和凋落物呼吸分别占总呼吸的59.5%、28.3%和12.2%.  相似文献   

12.
利用LI-8100土壤呼吸测定系统, 在室内控制温度条件下测定了长白山高山苔原季节性雪斑大白花地榆(Sanguisorba sitchensis (=S. stipulata))群落土壤呼吸对温度的响应过程, 并根据野外连续测定的全年温度, 估算了雪斑群落土壤呼吸的季节变化, 同时模拟气温升高对土壤呼吸的影响。雪斑土壤温度全年大部分时间维持在0 ℃以上, 极端温度变动幅度不超过20 ℃。模拟计算了10 cm深土壤的呼吸强度, 海拔2 036 m处为307.1 g C·m-2·a-1, 海拔2 260 m处的呼吸量为270.9 g C·m-2·a-1。由于积雪时间长, 冬季呼吸占很大比例, 而且随着海拔的升高比例加大。从海拔2 036 m到2 260 m, 积雪期土壤呼吸分别占全年的42.5% (125.4 g C·m-2·a-1)和49.7% (128.7 g C·m-2·a-1)。模拟气温升高1 ℃并假设积雪时间减少20天, 冬天的呼吸量减少8%左右, 但全年总呼吸量增加8%左右。升温后, 平均增加的呼吸量为0.25 g C·kg-1·a-1 (或22.65 g C·m-2·a-1), 冬季呼吸量减少0.118 g C·kg-1·season-1 (或10.81 g C·m-2·season-1)。  相似文献   

13.
 土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m–2·a–1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。  相似文献   

14.
采用LI-6400便携式光合作用系统对田间条件下嫁接番茄(珍红/砧木1号,珍红/桂砧1号)以及接穗(珍红)的光合作用特性进行了系统研究。结果表明:自根苗的光饱和点显著高于嫁接苗;自根苗和嫁接苗的光补偿点差异不显著,以珍红/桂砧1号最高(31.8μmolphotons·m-2·s-1),珍红/砧木1号最低(17.6μmolphotons·m-2·s-1);嫁接苗的CO2补偿点显著低于自根苗,且珍红/桂砧1号与自根苗的差异达极显著水平;表观量子效率变化范围为0.062~0.073;CO2饱和点在844~971μmolCO2·mol-1左右,CO2羧化效率变化范围为0.055~0.086molCO2·m-2·S-1;光合作用CO2补偿点珍红、珍红/砧木1号和珍红/桂砧1号分别为74.0、60.8和50μmolCO2·mol-1。嫁接苗的日平均光合速率和蒸腾速率高于自根苗,但两者的日进程曲线均为“单峰型”,其光合作用不存在“午休现象”。  相似文献   

15.
土壤呼吸是陆地生态系统碳循环的重要组成部分。随着全球气候变暖趋势逐渐明显, 土壤呼吸的时空变异及其对温度变化的响应已成为生态学研究的重要内容之一。利用LI-8100自动土壤CO2通量测量系统, 连续两年生长季测定了准噶尔盆地新垦绿洲杨树(Populus sp.)、榆树(Ulmus pumila)人工防护林地土壤呼吸的时间动态, 并分析了土壤水热因子及光合作用对土壤呼吸的影响。研究结果表明: 两种林分土壤呼吸日变化波动呈现一定的不规则性; 季节变化表现为明显的单峰格局。杨树林地土壤呼吸速率显著高于榆树林地, 生长季平均土壤呼吸速率分别为3.71和1.82 μmol CO2·m-2·s-1。两种林分土壤呼吸的季节变化与气温、不同深度层次土壤温度间均呈显著的指数相关, 而与土壤含水量之间相关不显著。50和35 cm土壤温度可以分别解释两种林分土壤呼吸时间变化的78.5%和64.4%, 与土壤温度和含水量的共同解释率接近。林分间土壤呼吸速率差异受到林木生长状况、光合作用及土壤盐分等的影响。研究结果初步阐明了准噶尔盆地干旱区典型绿洲防护林植被土壤呼吸的季节动态特征及主要影响因子, 为进一步揭示该区域林地土壤碳循环特点提供了一定的理论基础。  相似文献   

16.
糯米条具有较强的观赏性,并逐渐应用于园林绿化中.本文主要对糯米条形态特征进行概述,同时对其生理生态指标进行了测定和总结.研究结果表明,糯米条叶片从枝先端开始的第5片就已完全成熟,其叶绿素含量稳定;利用Licor6400便携式光合仪测定糯米条的光补偿点为12 μmol·m~(-2)·s~(-1),光饱和点为356 μmol·m~(-2)·s~(-1),最大的光合速率为4.856μmol·m~(-2)·s~(-1),呼吸速率为0.401μmol·m~(-2)·s~(-1),这些数据表明糯米条为阳性植物;测定糯米条的CO_2补偿点为92.8μmol/mol,CO_2饱和点为822.4μmol/mol.叶绿素荧光参数变化数据表明,糯米条能适应37℃的强光、高温环境.根据实验结果,我们建议糯米条在园林中的主要应用形式为地被、绿篱、攀扎整形和球形观赏.  相似文献   

17.
Carbon balance along the Northeast China Transect (NECT-IGBP)   总被引:6,自引:0,他引:6  
The Northeast China Transect (NECT) along a precipitation gradient was used to cal-culate the carbon balance of different vegetation types, land-use practices and temporal scales. NECT consists of mixed coniferous-broadleaved forest ecosystems, meadow steppe ecosystemsand typical steppe ecosystems. Analyses of the C budget were carried out with field measurement based on dark enclosed chamber techniques and alkali absorption methods, and the application of the CENTURY model. Results indicated that: (1) soil CO_2 flux had a strong diurnal and seasonal variation influenced by grassland type and land-use practices. However, the seasonal variation on soil CO_2 fluxes did not show obvious changes between non-grazing and grazing Leymus chinensis dominated grasslands. (2) Hourly soil CO_2 fluxes mainly depended on temperature, while dailyCO_2 fluxes were affected both by temperature and moisture. (3) NPP of the three typical ecosys-tems showed linear relationships with inter-annual precipitation, but total soil carbon of those eco-systems did not. NPP and total soil carbon values decreased westward with decreasing precipita-tion. (4) Model simulation of NPP and total soil carbon showed that mean annual precipitation was the major limiting factor for ecosystem productivity along NECT. (5) Mean annual carbon budget is the largest for the mixed coniferous- broadleaved forest ecosystem (503.2 gC m~(-2)a~(-1)), followed bythe meadow steppe ecosystem (227.1 gC m~(-2)a~(-1)), and the lowest being the typical steppe eco-system (175.8 gC m~(-2)a~(-1)). This study shows that concurrent field measurements of terrestrial ecosystems including the soil and plant systems with surface layer measurements along the wa-ter-driven IGBP-NECT are valuable in understanding the mechanisms driving the carbon cycle in different vegetation types under different land-use practices. Future transect research should be emphasized.  相似文献   

18.
秸秆还田和施氮对农田土壤呼吸的影响   总被引:45,自引:2,他引:43  
2003年10月至2004年9月期间在华北平原冬小麦-玉米轮作的高产粮区开展了土壤温度、秸秆还田和施氮对农田土壤呼吸影响的研究。土壤类型是砂姜黑土。试验共设6个处理,分别是N 1、N 1 W、N 2 W、N 3 W N 1 W O和N 2 W M,其中N 1、N 2和N 3表示3个施氮水平(纯N计,下同),分别是200 kg hm-2、400 kg hm-2和600 kg hm-2,W表示小麦秸秆还田,M表示玉米秸秆的1/3还田,O表示施用有机肥(每年施用鸡粪30 m3hm-2)。土壤呼吸采用碱液吸收法测定,每个处理6次重复,结果表明:(1)土壤呼吸季节动态明显,夏季高冬季低,土壤呼吸排放速率与5cm深度地温线性拟合最好(R2=0.63~0.74,p<0.001),而与地表温度线性拟合最差。各处理土壤呼吸的年通量在5650~7061 kg.hm-2(纯C计,下同),随着秸秆还田量的增加,土壤呼吸通量显著增加(p=0.05),随着施氮量的增加土壤呼吸通量也增加,但只有施氮量相差400 kg hm-2时,土壤呼吸通量差异显著(p=0.05),施用有机肥的处理土壤呼吸通量最高,有机肥施用后1~2个月,有机肥快速分解,表现为高的土壤呼吸通量。由土壤呼吸与5cm深度地温指数拟合方程求得的Q10值在1.86~2.26之间。  相似文献   

19.
垄沟覆膜栽培冬小麦田的土壤呼吸   总被引:3,自引:0,他引:3  
上官宇先  师日鹏  韩坤  王林权 《生态学报》2012,32(18):5729-5737
通过大田试验研究了垄沟覆膜栽培条件下冬小麦生长过程中土壤呼吸规律。结果表明,垄沟覆膜栽培条件下垄脊土壤呼吸速率高于平作栽培,而垄沟部土壤呼吸速率小于平作。冬小麦生育期内垄脊平均呼吸速率为(2.06±0.44)μmol CO2·m-2·s-1,垄沟为(0.75±0.11)μmol CO2·m-2·s-1,而平作栽培为(1.14±0.20)μmol CO2·m-2·s-1。土壤呼吸季节变化显著,越冬期低,夏季高。不同生育期土壤呼吸日变化规律不同,越冬前和返青期土壤呼吸与土壤温度成正相关,随着土壤温度的升高而增加,呈单峰曲线;拔节期后垄脊部的土壤呼吸日变化明显,呈现双峰曲线;而平作和垄沟的土壤呼吸速率平稳,没有明显峰值。5 cm土壤温度与土壤呼吸之间的相关性最好。在一定范围内(<24—31℃),土壤呼吸随着温度的增加而增加,温度过高反而会抑制土壤呼吸速率。土壤呼吸f(R)与5 cm土壤温度之间的关系可以用二次函数表示;5 cm土壤温度T和土壤含水量W的交互效应可用函数:f(R)=a(bT2+cT)(1+dln(2W)/T)+e表示。垄沟覆膜栽培显著改变了冬小麦田的土壤呼吸作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号