首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的构建人Hesl-shRNA和Hes5-shRNA慢病毒表达载体,为Notch—Hes信号通路的相关研究奠定基础。方法根据人Hes1,Hes5基因mRNA序列分别设计、合成多对互补的DNA单链寡核苷酸,退火后克隆至pENTR/U6入门载体。通过入门载体瞬时转染神经胶质瘤U251细胞筛选有效干扰序列。将含有效干扰序列的入门载体与pLenti6/BLOCK—iT—DEST载体进行LR重组构建Hesl—shRNA和Hes5-shRNA慢病毒表达载体,经脂质体介导入293FT细胞,包装成慢病毒。用该慢病毒感染U251细胞,Western印迹法分别检测Hes1,Hes5蛋白的表达。结果分别构建了针对Hes1和Hes5基因的特异性shRNA慢病毒表达载体,其包装获得慢病毒可有效感染U251细胞并分别对HeM,Hes5蛋白的表达有显著抑制作用。结论成功构建了Hesl—shRNA和Hes5-shRNA慢病毒表达载体。  相似文献   

2.
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

3.
H Wang  J Wu  X Liu  H He  F Ding  H Yang  L Cheng  W Liu  J Zhong  Y Dai  G Li  C He  L Yu  J Li 《PloS one》2012,7(8):e42356

Background

Although it is known that RNA interference (RNAi) targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV), it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge.

Principal Finding

Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2), VP3 (RNAi-VP3), or VP4 (RNAi-VP4) of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h.

Conclusion

RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.  相似文献   

4.
Hyperexpression of oncogene c-kit is found in 80% patients with acute myeloid leukemia (AML). The transgenic model cell line expressing the oncogene c-kit was obtained by transduction with recombinant retrovirus. We have designed small interfering RNAs (siRNA) efficiently suppressing the expression of activated oncogene c-kit. Further small hairpin RNAs (shRNA) targeting c-kit mRNA were designed and expressed in lentiviral vectors. We report a stable reduction in c-kit expression following the introduction of shRNAs into model cells as well as Kasumi-1 cells from the patient with AML.  相似文献   

5.
探索用PGenesil-1(Pg)构建的靶向乙型肝炎病毒表面抗原(HBsAg)基因的shRNA表达载体PGenesil-1-HBs(简称Pgs),对体外培养HepG2.2.15细胞中的HBV基因及其抗原表达的抑制作用.设计、合成靶向HBV S区的3对DNA序列,分别插入PGenesil-1中构建3个siRNA表达载体Pgs1、Pgs2、Pgs3,经限制性内切酶,DNA序列测定等技术鉴定确认.筛选并确定最佳细胞接种量及重组质粒转染量后,分别或按不同组合转染HepG-2.2.15细胞,48 h后采用半定量RT-PCR检测HBVsmRNA转录水平,免疫细胞化学技术检测HBsAg表达水平,MEIA分别检测细胞裂解液和培养上清中HBsAg和HBeAg的表达水平.结果表明,HBV真核表达载体Pgs1、Pgs2、Pgs3均能不同程度地抑制HepG2.2.15细胞中的HBsAg、HBeAg合成和HBs-mRNA转录.成功构建的HBV真核表达载体Pgs1、Pgs2、Pgs3,其中PgS3能显著抑制HBsAg表达(P<0.01).多种表达载体联合对抗原表达的抑制作用效率不同.  相似文献   

6.
RNA interference (RNAi) is commonly used to produce virus tolerant transgenic plants. The objective of the current study was to generate transgenic sugarcane plants expressing a short hairpin RNAs (shRNA) targeting the coat protein (CP) gene of sugarcane mosaic virus (SCMV). Based on multiple sequence alignment, including genomic sequences of four SCMV strains, a conserved region of ~ 456 bp coat protein (CP) gene was selected as target gene and amplified through polymerase chain reaction (PCR). Subsequently, siRNAs2 and siRNA4 were engineered as stable short hairpin (shRNA) transgenes of 110 bp with stem and loop sequences derived from microRNA (sof-MIR168a; an active regulatory miRNA in sugarcane). These transgenes were cloned in independent RNAi constructs under the control of the polyubiquitin promoter. The RNAi constructs were delivered into two sugarcane cultivars ‘SPF-234 and NSG-311 in independent experiments using particle bombardment. Molecular identification through PCR and Southern blot revealed anti-SCMV positive transgenic lines. Upon mechanical inoculation of transgenic and non-transgenic sugarcane lines with SCMV, the degree of resistance was found variable among the two sugarcane cultivars. For sugarcane cultivar NSG-311, the mRNA expression of the CP–SCMV was reduced to 10% in shRNA2-transgenic lines and 80% in shRNA4-transgenic lines. In sugarcane cultivar SPF-234, the mRNA expression of the CP–SCMV was reduced to 20% in shRNA2-transgenic lines and 90% in shRNA4 transgenic lines, revealing that transgenic plants expressing shRNA4 were almost immune to SCMV infection.  相似文献   

7.
8.
9.
Bao Y  Guo Y  Zhang L  Zhao Z  Li N 《Molecular biology reports》2012,39(3):2515-2522
With the ultimate aim of producing an RNA interference-mediated transgenic pig that is resistant to porcine reproductive and respiratory syndrome virus (PRRSV), we have investigated the effect of RNA interference (RNAi) on silencing the expression of viral genes in the MARC-145 cell line. Twenty small interfering RNAs (siRNAs) were designed and screened for their ability to suppress the expression of the genes ORF1b, 5, 6, and 7 from the highly virulent isolate, PRRSV-JXwn06. Of these siRNAs, the four most effective were selected and four short hairpin RNA (shRNA) expression vectors (pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169) targeting ORF1b and ORF6 were constructed and delivered into MARC-145 cells. These cells were then infected with JXwn06. All four vectors inhibited the PRRSV-specific cytopathic effect (CPE). The virus titers in cells transfected with pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169 were lower than that of control cells by approximately 150-, 600-, 2.3- and 1.7-fold, respectively. In addition, the expression levels of ORF1 and ORF6 were reduced compared with controls. The unglycosylated membrane protein M, encoded by ORF6, was not detectable in cells transfected with shRNA expression vectors. These results verified that RNAi can effectively inhibit PRRSV-JXwn06 replication in cultured cells in vitro. The four shRNA expression vectors are an initial step in the production of transgenic pigs with PRRSV resistance.  相似文献   

10.
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector‐based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue‐specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene‐silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6‐shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6‐shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.  相似文献   

11.
A miRNA involved in phosphate-starvation response in Arabidopsis   总被引:27,自引:0,他引:27  
Fujii H  Chiou TJ  Lin SI  Aung K  Zhu JK 《Current biology : CB》2005,15(22):2038-2043
Although microRNAs (miRNAs) have been documented to regulate development in plants and animals , the function of miRNAs in physiology is unclear. miR399 has multiple target sites in the 5' untranslated region (UTR) of a gene encoding a putative ubiquitin-conjugating enzyme (UBC) in Arabidopsis thaliana. We report here that miR399 was highly induced, whereas the target UBC mRNA was reduced by low-phosphate (Pi) stress. In transgenic plants with constitutive expression of miR399, UBC mRNA accumulation was suppressed even under high Pi. The expression of transgene UBC mRNA with 5' UTR miR399 target sites, but not the one without 5' UTR, was reduced under low-Pi condition. Furthermore, transgenic Arabidopsis plants with constitutive expression of miR399 accumulated more Pi than the wild-type, and transgenic plants expressing the UBC mRNA without 5' UTR (miRNA-deregulated) showed less inhibition of primary root growth and less induction of a Pi transporter gene by low-Pi stress than those of wild-type plants. We conclude that miR399 downregulates UBC mRNA accumulation by targeting the 5' UTR, and this regulation is important for plant responses to Pi starvation. The results suggest that miRNAs have functional roles for plants to cope with fluctuations in mineral-nutrient availability in the soil.  相似文献   

12.
Versican is an extracellular chondroitin sulfate proteoglycan which functions as a structural molecule but can also regulate a variety of cellular activities. This study was designed to explore the roles of versican in the process of dermal wound repair. To elevate levels of versican, we ectopically expressed the versican 3′-untranslated region (3′UTR) as a competitive endogenous RNA to modulate expression of versican. We demonstrated that wounds closed faster in transgenic mice expressing the versican 3′UTR, as compared to those in wildtype mice. We stably expressed versican 3′UTR in NIH3T3 fibroblasts and found that the 3′UTR-transfected cells showed increased migratory capacity relative to vector-transfected cells. Interestingly, we found that the 3′UTRs of versican and β-catenin shared common microRNAs (miRNAs) including miR-185, miR-203*, miR-690, miR-680, and miR-434-3p. Luciferase assays showed that all of these miRNAs could target the 3′UTRs of both versican and β-catenin, when the luciferase constructs contained fragments harboring the miRNA binding sites. As a consequence, expression of both versican and β-catenin was up-regulated, which was confirmed in vitro and in vivo. Transfection with small interfering RNAs (siRNAs) targeting the versican 3′UTR abolished the 3′UTR's effects on cell migration and invasion. Taken together, these results demonstrate that versican plays important roles in wound repair and that versican messenger RNAs (mRNAs) could compete with endogenous RNAs for regulating miRNA functions.  相似文献   

13.
BACKGROUND: Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass. METHODS: Short interfering RNAs (siRNAs) targeting myostatin were co-transfected with a myostatin-expressing plasmid into HEK293 cells and identified for myostatin silencing by Western blot. Corresponding shRNAs were cloned into plasmid shRNA expression vectors. Myostatin or a randomer negative control shRNA plasmid was injected and electroporated into the tibialis anterior or its contralateral muscle, respectively, of nine rats that were sacrificed after 2 weeks. Six other rats received a beta-galactosidase reporter plasmid and were sacrificed at 1, 2, and 4 weeks. Uptake of plasmid was examined by beta-galactosidase expression, whereas myostatin expression was determined by real-time polymerase chain reaction (PCR) and Western blotting. Muscle fiber size was determined by histochemistry. Satellite cell proliferation was determined by PAX7 immunohistochemistry. Myosin heavy chain type II (MHCII) expression was determined by Western blot. RESULTS: beta-Galactosidase reporter plasmid was expressed at 1 and 2 weeks but diminished by 4 weeks in tibialis anterior skeletal muscle. Myostatin shRNA reduced myostatin mRNA and protein expression by 27 and 48%, respectively. Tibialis anterior weight, fiber size, and MHCII increased by 10, 34, and 38%, respectively. Satellite cell number was increased by over 2-fold. CONCLUSIONS: This is the first demonstration that myostatin shRNA gene transfer is a potential strategy to increase muscle mass.  相似文献   

14.
MicroRNAs (miRNAs) are one class of tiny, endogenous RNAs that can regulate messenger RNA (mRNA) expression by targeting homologous sequences in mRNAs. Their aberrant expressions have been observed in many cancers and several miRNAs have been convincingly shown to play important roles in carcinogenesis. Since the discovery of this small regulator, computational methods have been indispensable tools in miRNA gene finding and functional studies. In this review we first briefly outline the biological findings of miRNA genes, such as genomic feature, biogenesis, gene structure, and functional mechanism. We then discuss in detail the three main aspects of miRNA computational studies: miRNA gene finding, miRNA target prediction, and regulation of miRNA genes. Finally, we provide perspectives on some emerging issues, including combinatorial regulation by miRNAs and functional binding sites beyond the 3′-untranslated region (3′UTR) of target mRNAs. Available online resources for miRNA computational studies are also provided.  相似文献   

15.
16.
17.
18.
目的:构建小鼠转化生长因子β1(TGF-β1)短发夹RNA(shRNA)真核表达载体,探讨TGF-β1在血管发育中的调控作用。方法:根据GenBank小鼠TGF-β1mRNA序列,设计合成三对短链寡核苷酸,退火后形成双链DNA并克隆至入门载体DEN_mH1c。将插入目的基因片段的入门载体与带有绿色荧光蛋白(GFP)标签的shRNA真核表达载体pDS_hpEy进行LR重组反应,完成三个TGF-β1shRNA表达载体的构建,分别命名为pDS_Ta,pDS_Tb和pDS_Tc。经测序确认后,转染小鼠成纤维细胞(NIH/3T3),筛选稳定表达的细胞克隆,以RT-PCR及Westem blot方法检测转染后TGF-β1mRNA和蛋白表达。结果:RT-PCR和Western blot显示pDS_Tc可明显下调NIH/313细胞TGF-β1的mRNA和蛋白表达,mRNA下调约为70%,蛋白表达减少约65%。结论:GFP标签TGF-β1shRNA表达载体能够阻断TGF-β1基因表达,可作为研究TGF-β1调控血管发育机制的一个工具,为阐明TGF-β1信号传导通路奠定基础。  相似文献   

19.
Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号