首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
The Staphylococcus aureus plasmid pI258 CadC is a homodimeric repressor that binds Cd(II), Pb(II), and Zn(II) and regulates expression of the cadAC operon. CadC binds two Cd(II) ions per dimer, with a tetrathiolate binding site composed of residues Cys(7), Cys(11), Cys(58), and Cys(60). It is not known whether each site consists of residues from a single monomer or from residues contributed by both subunits. To examine whether Cys(7) and Cys(11) are spatially proximate to Cys(58) and Cys(60) of the same subunit or of the other subunit, homodimers with the same cysteine mutation in each subunit and heterodimers containing different cysteine mutations in the two subunits were reacted with 4,6-bis(bromomethyl)-3,7-dimethyl-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione, which cross-links thiol groups that are within 3-6 A of each other. Cys(7) or Cys(11) cross-linked only with Cys(58) or Cys(60) on the other subunit. The data demonstrate that Cys(7) and Cys(11) from one monomer are within 3-6 A of either Cys(58) or Cys(60) in the other monomer. The results of this study strongly indicate that each of the two Cd(II) binding sites in the CadC homodimer is composed of Cys(7) and Cys(11) from one monomer and Cys(58) and Cys(60) from the other monomer.  相似文献   

4.
5.
6.
7.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

8.
9.
10.
ArsD is a 120-residue repressor that regulates expression of the arsRDABC arsenical resistance operon of plasmid R773 in Escherichia coli. ArsD is released from arsRDABC promoter DNA by binding of the compounds with the metalloids As(III) or Sb(III). ArsD has three vicinal cysteine pairs, Cys-12 and Cys-13, Cys-112 and Cys-113 and Cys-119 and Cys-120. In this study, the role of these three cysteine pairs was investigated. Mutation or deletion of Cys-119-Cys-120 had no effect on repression or metalloid responsiveness in vivo or in vitro. Mutagenesis of either the Cys-12-Cys-13 pair or the Cys-112-Cys-113 pair had no effect on repression but produced loss of inducibility, suggesting that both Cys-12-Cys-13 and Cys-112-Cys-113 may be required for As(III) or Sb(III) responsiveness. Assays of binding of wild-type and mutant ArsDs by As(III) affinity chromatography showed that each of the three vicinal cysteine pairs is capable of binding As(III) independently. The effect of As(III) or Sb(III) on intrinsic protein fluorescence was used to examine the properties of individual cysteine pairs. The fluorescence of Trp-97 was shown to be quenched by the addition of Sb(III) or As(III). The vicinal Cys-112-Cys-113 pair was required for the majority of the metalloid-dependent quenching of Trp-97 fluorescence. The data are consistent with a model in which Cys-12-Cys-13 and Cys-112-Cys-113 form independent As(III) binding sites, both of which are required for in vivo ArsD function.  相似文献   

11.
Staphylococcus aureus pI258 CadC is an extrachromosomally encoded metalloregulatory repressor protein from the ArsR superfamily which negatively regulates the expression of the cad operon in a metal-dependent fashion. The metalloregulatory hypothesis holds that direct binding of thiophilic divalent cations including Cd(II), Pb(II), and Zn(II) by CadC allosterically regulates the DNA binding activity of CadC to the cad operator/promoter (O/P). This report presents a detailed characterization of the metal binding and DNA binding properties of wild-type CadC. The results of analytical ultracentrifugation experiments suggest that both apo- and Cd(1)-CadC are stable or weakly dissociable homodimers characterized by a K(dimer) = 3.0 x 10(6) M(-1) (pH 7.0, 0.20 M NaCl, 25.0 degrees C) with little detectable effect of Cd(II) on the dimerization equilibrium. As determined by optical spectroscopy, the stoichiometry of Cd(II) and Pb(II) binding is approximately 0.7-0.8 mol/mol of wild-type CadC monomer. Chelator (EDTA) competition binding isotherms reveal that Cd(II) binds very tightly, with K(Cd) = 4.3 (+/-1.8) x 10(12) M(-1). The results of UV-Vis and X-ray absorption spectroscopy of the Cd(1) complex are consistent with a tetrathiolate (S(4)) complex formed by four cysteine ligands. The (113)Cd NMR spectrum reveals a single resonance of delta = 622 ppm, consistent with an S(3)(N,O) or unusual upfield-shifted S(4) complex. The Pb(II) complex reveals two prominent absorption bands at 350 nm (epsilon = 4000 M(-1) cm(-1)) and 250 nm (epsilon = 41 000 M(-1) cm(-1)), spectral properties consistent with three or four thiolate ligands to the Pb(II) ion. The change in the anisotropy of a fluorescein-labeled oligonucleotide containing the cad O/P upon binding CadC and analyzed using a dissociable CadC dimer binding model reveals that apo-CadC forms a high-affinity complex [K(a) = (1.1 +/- 0.3) x 10(9) M(-1); pH 7.0, 0.40 M NaCl, 25 degrees C], the affinity of which is reduced approximately 300-fold upon the binding of a single molar equivalent of Cd(II) or Pb(II). The implications of these findings on the mechanism of metalloregulation are discussed.  相似文献   

12.
T J Daly  J S Olson  K S Matthews 《Biochemistry》1986,25(19):5468-5474
The lactose repressor protein has been modified with three sulfhydryl-specific reagents which form mixed disulfide adducts. Methyl methanethiosulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) completely reacted with all three cysteine residues, whereas only partial reaction was observed with didansylcystine. Cysteines-107 and -140 reacted stoichiometrically with MMTS and DTNB, while Cys-281 was modified only at higher molar ratios. Didansylcystine reacted primarily with cysteines-107 and -140. Affinity of MMTS-modified repressor for 40 base pair operator DNA was decreased 30-fold compared to unmodified repressor, and this decrease correlated with modification of cysteine-281. DTNB-modified repressor bound operator DNA with a 50-fold weaker affinity than unmodified repressor. Modification of the lac repressor with didanylcystine decreased operator binding only 4-fold, and nonspecific DNA binding increased 3-fold compared to unmodified repressor. No change in the inducer equilibrium binding constant was observed following modification with any of these reagents. In contrast, inducer association and dissociation rate constants were decreased approximately 50-fold for repressor completely modified with MMTS or DTNB, while didansylcystine had minimal effect on inducer binding kinetics. Correlation between modification of Cys-281 and the observed decrease in rate constants indicates that this region of the protein regulates the accessibility of the sugar binding site. The parallel between the increase in the Kd for repressor binding to operator, the altered rate constant for inducer binding, and modification of cysteine-281 suggests that this region of the protein is crucially involved in the function of the repressor protein.  相似文献   

13.
T J Daly  K S Matthews 《Biochemistry》1986,25(19):5474-5478
A monomeric mutant lactose repressor protein (T-41), containing serine at position 282 in place of tyrosine [Schmitz, A., Schmeissner, U., Miller, J. H., & Lu, P. (1976) J. Biol. Chem. 251, 3359-3366], has been purified by a series of chromatographic and precipitation methods. The molecular weight of the mutant as determined by gel filtration was approximately 40,000. The inducer equilibrium binding constant for the mutant was comparable to that of the tetrameric wild-type repressor at pH 7.5, whereas operator DNA binding was not detectable. In contrast to wild-type repressor, equilibrium and kinetic rate constants for inducer binding to the monomer were largely independent of pH; thus, the quaternary structure of the wild-type repressor is required for the pH-associated effects on inducer binding. Although ultraviolet absorbance difference spectra indicated that inducer binding to T-41 protein elicited different changes in the environment of aromatic residues from those generated in wild-type repressor, the shift in the fluorescence emission maximum in response to inducer binding was similar for T-41 and wild-type repressors. Similarity in 1-anilinonaphthalene-8-sulfonic acid binding to monomer and tetramer suggests that this fluorophore does not bind at subunit interfaces. Modification of Cys-281 with methyl methanethiosulfonate was observed at low molar ratios of reagent per T-41 monomer (4-fold). This result is in contrast to data observed for tetrameric wild-type repressor which requires high molar ratios for this cysteine to react. We conclude that Cys-281, adjacent to the site of the T-41 mutation, is located on the surface of the monomer in this region crucial for subunit interaction.  相似文献   

14.
Recently, a poplar phloem peroxiredoxin (Prx) was found to accept both glutaredoxin (Grx) and thioredoxin (Trx) as proton donors. To investigate the catalytic mechanism of the Grx-dependent reduction of hydroperoxides catalyzed by Prx, a series of cysteinic mutants was constructed. Mutation of the most N-terminal conserved cysteine of Prx (Cys-51) demonstrates that it is the catalytic one. The second cysteine (Cys-76) is not essential for peroxiredoxin activity because the C76A mutant retained approximately 25% of the wild type Prx activity. Only one cysteine of the Grx active site (Cys-27) is essential for peroxiredoxin catalysis, indicating that Grx can act in this reaction either via a dithiol or a monothiol pathway. The creation of covalent heterodimers between Prx and Grx mutants confirms that Prx Cys-51 and Grx Cys-27 are the two residues involved in the catalytic mechanism. The integration of a third cysteine in position 152 of the Prx, making it similar in sequence to the Trx-dependent human Prx V, resulted in a protein that had no detectable activity with Grx but kept activity with Trx. Based on these experimental results, a catalytic mechanism is proposed to explain the Grx- and Trx-dependent activities of poplar Prx.  相似文献   

15.
16.
VanZile ML  Chen X  Giedroc DP 《Biochemistry》2002,41(31):9776-9786
The Synechococcus PCC 7942 smt operon is responsible for cellular resistance to excess zinc and consists of two divergently transcribed genes, smtB and smtA. SmtB is the Zn(II)-sensing metal-regulated repressor of the system and binds to a 12-2-12 imperfect inverted repeat in the smtA O/P region. Using fluorescence anisotropy to monitor SmtB-smt O/P multiple equilibria, we show that four SmtB homodimers bind to a 40 bp oligonucleotide containing a single 12-2-12 inverted repeat. The binding affinities of the first two dimers are very tight (K(int) = 2.9 x 10(9) M(-1)) with the affinities of the third and fourth dimers lower by approximately 10- and approximately 30-fold, respectively. A single monomer equivalent of Zn(II), Cd(II), or Co(II) promotes disassembly of the oligomeric complex to a mixture of (P(2)).D and (P(2))(2).D SmtB dimer-DNA complexes with the intrinsic affinity of all SmtB homodimers for DNA greatly reduced by approximately 500-2000-fold. Substitution or derivatization of cysteines which comprise the alpha3N metal binding site (Cys14 and Cys61) [VanZile, M. L., et al. (2002) Biochemistry 41, 9765-9775] has no effect on allosteric negative regulation by Zn(II); in contrast, H106Q SmtB, harboring a single zinc-liganding substitution in the alpha5 metal binding site, is refractory to zinc-induced disassembly of SmtB-DNA complexes. The alpha5 metal binding sites are therefore regulatory for Zn(II) sensing in vitro and in vivo, while the high-affinity alpha3N sites play some other role. This finding for SmtB is the opposite of that previously determined for Staphylococcus aureus pI258 CadC, a Pb(II)/Cd(II)/Bi(III) sensor [Busenlehner, L. S., et al. (2002) J. Mol. Biol. 319, 685-701], thus providing insight into the origin of functional metal ion selectivity in this family of metal sensor proteins.  相似文献   

17.
Formation of intramolecular disulfide bonds is a key step in the early maturation of newly synthesized Mr 46,000 mannose 6-phosphate receptors to acquire ligand-binding activity (Hille, A., Waheed, A., and von Figura, K. (1990) J. Cell Biol. 110, 963-972). The luminal domain of the receptor, which carries the ligand-binding site, contains 6 cysteine residues. We have analyzed the function of individual cysteine residues for the ligand-binding conformation by exchanging cysteine for glycine. In each case, the replacement of cysteine resulted in a complete loss of binding activity, indicating that all 6 luminal cysteine residues are required for the ligand-binding conformation. The cysteine mutants displayed a greatly reduced immunoreactivity, decreased stability, and a blocked or delayed transport to the trans Golgi. The glycosylation pattern allowed the distinguishing of three phenotypes, each of which was represented by one pair of cysteine mutants. Based on the assumption that replacement of either of the 2 cysteine residues forming a disulfide bond results in an identical phenotype, we postulate that disulfide bonds are formed between Cys-32 and Cys-78 and between Cys-132 and Cys-167, as well as between Cys-145 and Cys-179. This assumption was supported by the observation that the simultaneous exchange of the 2 cysteine residues of a putative pair resulted in the same phenotypes as the single exchange of either of the 2 cysteine residues.  相似文献   

18.
19.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

20.
CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with 2 Na(+) ions. Reaction of Cys-398 and Cys-414, which are located in a cytoplasmic loop of the protein that is believed to be involved in catalysis, with thiol reagents resulted in significant inhibition of uptake activity. The reactivity of the two residues was determined in single Cys mutants in different catalytic states of the transporter and from both sides of the membrane. The single Cys mutants were shown to have the same transport stoichiometry as wild type CitS, but the C398S mutation was responsible for a 10-fold loss of affinity for Na(+). Both cysteine residues were accessible from the periplasmic as well as from the cytoplasmic side of the membrane by the membrane-impermeable thiol reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) suggesting that the residues are part of the translocation site. Binding of citrate to the outward facing binding site of the transporter resulted in partial protection against inactivation by N-ethylmaleimide, whereas binding to the inward facing binding site resulted in essentially complete protection. A 10-fold higher concentration of citrate was required at the cytoplasmic rather than at the periplasmic side of the membrane to promote protection. Only marginal effects of citrate binding were seen on reactivity with MTSET. Binding of Na(+) at the periplasmic side of the transporter protected both Cys-398 and Cys-414 against reaction with the thiol reagents, whereas binding at the cytoplasmic side was less effective and discriminated between Cys-398 and Cys-414. A model is presented in which part of the cytoplasmic loop containing Cys-398 and Cys-414 folds back into the translocation pore as a pore-loop structure. The loop protrudes into the pore beyond the citrate-binding site that is situated at the membrane-cytoplasm interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号