首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nadelhoffer  K. J.  Johnson  L.  Laundre  J.  Giblin  A. E.  Shaver  G.R. 《Plant and Soil》2002,242(1):107-113
We used ingrowth cores to estimate fine root production in organic soils of wet sedge and moist tundra ecosystems near Toolik Lake on Alaska's North Slope. Root-free soil cores contained in nylon mesh tubes (5 cm diameter, 20–30 cm long) were placed in control and chronically fertilized (N plus P) plots in mid-August 1994 and were retrieved 1 year later. Estimated fine root production in control plots was 75 g m–2 year–1 in wet sedge and 56 g m–2 year–1 in moist tussock tundra. Fine root production in fertilized plots was 85 g m–2 year–1 in wet sedge and 67 g m–2 year–1 in moist tussock tundra. Although our estimates of fine root production were higher on fertilized than control plots, differences were not statistically significant within either tundra type. Comparisons between our estimates of fine root production and other estimates of aboveground (plus rhizome) production on the same (wet sedge tundra) or similar (moist tussock tundra) plots suggest that fine root production was about one-third of total net primary production (NPP) under non-fertilized conditions and about one-fifth of total NPP under chronic fertilization. Fine root N and P concentrations increased with fertilization in both tundra types, but P concentrations increased more than N concentrations in wet sedge tundra, whereas relative increases in N and P concentrations in moist tundra roots were similar. These data are consistent with other studies suggesting that NPP in wet sedge tundra is often P limited and that co-limitation by N and P is more important in moist tussock tundra.  相似文献   

2.
Effects of differences in long-term water supply were examined on soil characteristics, primary production and species composition in a wet and a dry site of an upland herbaceous grassland. Also the responses of species to N and P enrichments were examined. N and P concentrations of non-legume species were positively related, indicating that biomass N:P ratios seem to be mainly determined by N:P supply ratios. Forbs had generally higher concentrations than graminoids. Intermittent water inundation of soil in the wet site resulted in greater soil N and P availability. The greater productivity of this site promoted the growth of forbs. A fertilizer experiment showed that biomass was limited by N only in the wet site, but by both nutrients in the dry one. The species with the higher N and P concentrations were favored more after N and P enrichment, respectively; however, species enhancement was not related to N:P ratios of species. This indicates that N and P concentrations of species, rather than N:P ratios of species, are better predictors of species responses to N and P enrichment. N:P ratios of whole communities were 8.73 for the wet and 11.36 for the dry site. These values in comparison with the responses of plant communities to N and P fertilization show that thresholds of N:P ratios indicative of N or P limitation are much lower than those found for European wetlands.  相似文献   

3.
In populations of dioecious plants, the differences in the cost of reproduction between male and female plants can promote a male-biased sex ratio. In this study, we examine the macronutrient levels in tissues of the dioecious wetland shrub Myrica gale to identify the cost of reproduction for male and female plants and to examine the effect of nutrients on the apparent sex ratio at the ramet level. We examined plants across 12 populations of M. gale inhabiting bogs and fens in Japan. For each population, we used line transects to estimate the apparent sex ratio and measured the concentrations of nitrogen (N), phosphorus (P), and potassium (K) in the leaves sampled from male and female plants and in the fruits from female plants. For five of the populations, we calculated the flowering frequency, mortality, and the recruitment rate (as the rate of clonal propagation). We found that the proportion of females was positively affected, and the male bias of sex ratios reduced, by increases in P concentration in leaves sampled from female plants. Neither mortality nor recruitment was affected by sex or by the nutrient concentration (P, K). The flowering frequency was not affected by sex or by K concentration, but decreased with decreases in the P concentration measured in leaves. This study confirmed that reproduction in M. gale is P-limited. We found no distinct differences in the flowering frequency, mortality, or recruitment rate between the male and female plants.  相似文献   

4.
Background: The extent to which nutrient availability influences plant community composition and dynamics has been a focus of ecological enquiry for decades.

Aims: Results from a long-term nitrogen (N) and phosphorus (P) addition experiment in alpine tundra were used to evaluate the importance of the two nutrients in structuring plant communities in three communities that differed in their snow cover amounts and duration and soil moisture characteristics.

Methods: A factorial N and P experiment was established in three meadows differing in initial vegetation composition and soil moisture. Plant and soil characteristics were measured after 20 years, and the dissimilarity among meadows and treatments were measured using permutational analysis of variance.

Results: Plant species richness declined uniformly across the three meadow types and in response to N and N + P additions, while both evenness and the Shannon diversity index finding indicated that nutrient additions had the highest impact on moister habitats. Overall, N impacts overshadowed changes attributed to P additions, and the N and N + P plots in wet meadow sites were the least diverse and scored the lowest dissimilarity averages among treatments. Dissimilarity estimates indicated that the control and P plots in the dry meadow community were more distinct in composition than all other plots, and especially those in the moist or wet meadows. Above-ground biomass of grasses and sedges (graminoids) increased with N additions while forbs appeared to show responses dictated in part by the graminoid responses. The most abundant grass species of moist and wet meadow, Deschampsia cespitosa, dominated N and N + P plots of the wet sites, but did not show a N response in moist areas in spite of its general abundance in moist meadow. Competition from other plant species in the moist areas likely diminished the D. cespitosa response and contributed to the resilience of the community to nutrient enrichment.

Conclusions: Initial community composition, as influenced by the specific moisture regime, appears to control the extent to which changes in nutrient resources can alter plant community structure. Long-term fertilization tends to support most but not all findings obtained from shorter-termed efforts, and wet meadows exhibit the largest changes in plant species numbers and composition when chronically enriched with N.  相似文献   

5.
Laura Gough  Sarah E. Hobbie 《Oikos》2003,103(1):204-216
In arctic Alaska, researchers have manipulated air temperature, light availability, and soil nutrient availability in several tundra communities over the past two decades. These communities responded quite differently to the same manipulations, and species responded individualistically within communities and among sites. For example, moist acidic tundra is primarily nitrogen (N)‐limited, whereas wet sedge tundra is primarily phosphorus (P)‐limited, and the magnitude of growth responses varies across sites within communities. Here we report results of four years of manipulated nutrients (N and/or P) and/or air temperature in an understudied, diverse plant community, moist non‐acidic tussock tundra, in northern Alaska. Our goals were to determine which factors limit above‐ground net primary productivity (ANPP) and biomass, how community composition changes may affect ecosystem attributes, and to compare these results with those from other communities to determine their generality. Although relative abundance of functional groups shifted in several treatments, the only significant change in community‐level ANPP and biomass occurred in plots that received both N and P, driven by an increase in graminoid biomass and production resulting from a positive effect of adding N. There was no difference in community biomass among any other treatments; however, some growth forms and individual species did respond. After four years no one species has come to dominate the treatment plots and species richness has not changed. These results are similar to studies in dry heath, wet sedge, and moist acidic tundra where community biomass had the greatest response to both N and P and warming results were more subtle. Unlike in moist acidic tundra where shrub biomass increased markedly with fertilization, our results suggest that in non‐acidic tundra carbon sequestration in plant biomass will not increase substantially under increased soil nutrient conditions because of the lack of overstory shrub species.  相似文献   

6.
植物叶片的养分重吸收是养分贫瘠生境中植物重要的养分保存机制。研究叶片养分重吸收对土壤水分的响应,有助于了解植物对环境的适应策略。以敦煌阳关湿地优势植物芦苇为对象,研究不同水分条件[高: 33.5%±1.9%、中: 26.4%±1.3%、低: 11.3%±1.5%]下芦苇叶片氮磷重吸收模式及其对土壤水分的响应。结果表明: 1)随着土壤水分下降,土壤N浓度显著降低,芦苇成熟叶片及衰老叶片N浓度显著升高,成熟叶片和衰老叶片P浓度及土壤P浓度均无显著变化。2)高水分条件叶片N重吸收效率为 76.1%,显著高于中(65.5%)、低(62.5%)水分条件;不同水分条件叶片P重吸收效率无显著差异。3)成熟叶片和衰老叶片N浓度与叶片N重吸收效率呈极显著负相关;成熟叶片P浓度与叶片P重吸收效率无显著相关性,而衰老叶片P浓度与叶片P重吸收效率呈极显著负相关。说明土壤水分缺乏不利于叶片N重吸收。  相似文献   

7.
The carbon, nitrogen and phosphorus contents in flowering and nonflowering shoots were compared after an important flowering event occurred in the Posidonia meadow of the Bay of Calvi. The flower formation caused a significant increase of C and a significant decrease of N concentrations in intermediate and adult leaves. Minimum daily requirements in mgshoot-1day-1 of 3.4 and 4.8 of C, 0.09 and 0.09 N, 0.01 and 0.02 of P respectively for nonflowering and flowering shoots were calculated. It shows that additional quantities of C and P are required for the inflorescence elaboration. The unchanged quantity of N required by the shoot for the inflorescence elaboration and the significant modification of N concentration in intermediate and adult leaves suggests that N is limited in the environment and that an efficient resorption of N occurs from leaves to ensure the inflorescence formation.  相似文献   

8.
Nutrient content and seasonality of the leaf component in cork-oak litterfal were studied over a two year period in two cork-oak forest sites differing in biomass and edaphic condition in the north-eastern Iberian peninsula. Fallen senescent leaves compared to young leaves showed higher non-mobile nutrient concentrations and lower mobile nutrient concentrations, specially P, N, K, and Mg. At both sites, seasonal fluctuations affected both leaf production and leaf mineral content. The maximum leaf fall period correspond to the start of the vegetative growth and to the lowest N and P concentration in the falling leaves. The opposite was true for the winter, when litterfal was minimal and N and P content in falling leaves was at a maximum.The comparison between falling leaves and canopy leaves suggests that the analysis of fallen leaves can be a useful measure of N and P nutrition in cork-oak. We found site dependent differences in nutrient content and nutrient remobilization. In comparison with Q. ilex, although litter production was in the same range, nutrient retranslocation was greater for Q. suber.  相似文献   

9.
为了探讨荒漠草原植物养分回收特征对长期增温和氮素添加的响应以及自然降水变异对其的调控作用,该研究依托实施12年的模拟增温和氮素添加实验平台,在相对多雨的2016年(超过长期均值52%)和相对少雨的2017年(低于长期均值16%),以常见C_3植物银灰旋花(Convolvulus ammannii)和C_4植物木地肤(Kochia prostrata)为研究对象,测定分析绿叶和枯叶的氮磷含量及回收效率。结果表明:(1)在相对多雨年(2016年),增温使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别增加了14.32%、25.45%、17.97%和46.47%,氮、磷回收效率分别显著减小了9.41%和16.99%(P0.05);氮素添加使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别提高了17.32%、25.62%、20.21%和51.41%,而氮、磷回收效率显著降低了9.33%和18.89%(P0.05);增温+氮素添加共同处理显著增加了植物氮磷含量、降低了氮磷回收效率。(2)在相对少雨年(2017年),增温、氮素添加、增温+氮素添加处理对植物叶片氮磷含量、回收效率均无显著影响。(3)叶片氮磷含量在物种间差异极显著(P0.000 1),而氮磷回收效率在物种间无显著差异。(4)回归分析表明,植物叶片氮磷含量随着土壤无机氮、有效磷及含水量的增加而增加,植物氮磷回收效率则随着土壤养分和水分的可利用性的增加而降低。研究认为,荒漠草原植物养分回收对全球变化的响应受自然降水变异的调控。  相似文献   

10.
了解植物养分浓度及其化学计量对土壤因子的响应,对预测脆弱而敏感生态系统对环境变化的响应至关重要。以敦煌阳关湿地优势种芦苇(Phragmites australis)为对象,通过野外调查与实验分析,研究芦苇不同器官生态化学计量特征及其影响因素。结果表明:芦苇各器官C、P含量为叶>根>茎,N含量及N∶P为叶>茎>根,C∶N为根>茎>叶,C∶P则为茎>根>叶。叶、根C含量显著高于茎(P<0.05),叶、根C含量之间无显著差异(P>0.05),根、茎和叶N、P含量及C∶N、C∶P和N∶P差异显著(P<0.05);芦苇根N∶P<14,叶片N∶P>16,茎N∶P介于14~16;C含量在各器官之间均无显著相关性(P>0.05),根与茎、叶N含量之间呈极显著正相关(P<0.01),根与茎P含量呈极显著正相关(P<0.01),茎与叶N含量呈显著正相关(P<0.05);土壤盐分与芦苇根和茎N含量呈极显著正相关(P<0.01),土壤P含量与茎P含量呈极显著正相关(P<0.01),土壤有效P与根、茎N含量呈极显著正相关(P<0.01);土壤P是影响芦苇根、茎化学计量的主要因素,土壤盐分是影响叶片化学计量的主要因素,芦苇趋向提高各器官N含量来应对高盐、低P的土壤环境。  相似文献   

11.
《Journal of bryology》2013,35(3):565-580
Abstract

A complete mineral nutrient fertilizer solution was added to carpets of Pseudoseleropodium purum growing in Windsor Forest, Berkshire, to study the efficiency of nutrient capture from dilute solutions and its effect on growth. In the experiment different frequencies of application were balanced by employing different concentrations of fertilizer so that all treatment plots received the same quantities of nutrients over a six-month period. At the end of the experiment the concentrations of macronutrients (N, P, K, Mg, Ca) within the moss tissues were determined and shoot growth was assessed by the tagged shoot method.

Significant luxury uptake occurred only in the case of P where shoot concentrations in fertilized plots were 50% above the control. Smaller net increases were noted for other elements, particularly Mg. Shoot N concentration was hardly affected by fertilizer application possibly due to efficient internal recycling of the element in P. purum. Levels of exchange ably held cations were not markedly increased by fertilizer addition in the field experiment but when shoots were incubated with fertilizers in the laboratory for 30 min the concentrations of exchangeable Ca and Mg rose appreciably and exchangeable K fell. These changes appear to be quickly reversed under field conditions without transfer of cations to the protoplasts. The importance of elevated cation exchange capacity in the initial sequestration of nutrient cations is, therefore, questioned. Growth stimulation due to fertilizer treatment was negligible. Maximum net uptake of P, Mg and Ca occurred when plots were watered at weekly intervals with a dilute fertilizer and least occurred where a concentrated solution was applied at less frequent intervals implying that contact time between P. purum and its potential nutrients is an important factor. The period elapsing between fertilizer additions may also have significance, however, due to leaching away of nutrients and the re-establishment of a natural ionic balance at the cell wall exchange sites. Levels of nutrient absorption and growth were greatest at a site where the moss remained moist longest. This result indicates that the ability of P. purum to absorb and utilize additional nutrients is governed by general metabolic performance which is itself restricted by water supply in Windsor Forest.  相似文献   

12.
Soil samples from mature and secondary forests and agricultural sites in three subtropical life zones of Puerto Rico and the US Virgin Islands were collected to determine the effects of forest conversion to agriculture and succession on soil organic carbon (C) and nitrogen (N) contents. Site characteristics that may affect soil C and N (slope, elevation, aspect, and texture) were as uniform as possible. Carbon contents (to 50 cm depth or bedrock) of cultivated sites, as a percent of corresponding mature forests, were lower in the wet (44%) and moist (31%) than in the dry (86%) life zones whereas N contents were relatively high regardless of life zone (60–130% of the mature forests). Conversion of forests to pasture resulted in less soil C and N loss than conversion to crops. The time for recovery of soil C and N during succession was approximately the same in all three life zones, about 40–50 yr for C about 15–20 yr for N. However, the rate of recovery of soil C was faster in the wet and moist life zone, whereas N appeared to recover faster in the dry life zone. Evidence for loss of soil C during cultivation and gain during succession to soil depths of 50–100 cm is presented.  相似文献   

13.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

14.
We investigated the influence of tilling, N fertilization and crop stage on arbuscular mycorrhizae (AM) fungal species diversity in a wheat monoculture in the Pampa region of Argentina. Glomalean spores were isolated by wet sieving and decanting from conventionally tilled and nontilled soils cropped with wheat with or without N fertilization, at three phenological stages of the crop (tilling, flowering and grain filling) and fallow. Morphological characterization yielded at least 24 AM fungi taxa in the field samples, belonging to six genera of AMF: Acaulospora Archaeospora, Entrophospora, Gigaspora, Glomus and Scutellospora. Tilling and fertilization treatments did not result in decreased spore biodiversity. Wheat phenology influenced AM communities, with highest spore biodiversity during grain filling.  相似文献   

15.
The responses of Acala cotton (Gossypium hirsutum L.) in California to a range of applied nitrogen (N) treatments were investigated in a 5-year, multisite experiment. The experiment's goals were to identify crop growth and yield responses to applied N and provide information to better assess the utility of soil residual N estimates in improving fertilizer management. Baseline fertilizer application rates for the lowest applied N treatments were based on residual soil nitrate-N (NO3-N) levels determined on soil samples from the upper 0.6 m of the soil collected prior to spring N fertilization and within 1 week postplanting each year. Results have shown positive cotton lint yield responses to increases in applied N across the 56 to 224 kg N/ha range in only 41% (16 out of 39) of test sites. Soil NO3-N monitoring to a depth of 2.4 m in the spring (after planting) and fall (postharvest) indicate most changes in soil NO3- occur within the upper 1.2 m of soil. However, some sites (those most prone to leaching losses of soluble nutrients) also exhibited net increases in soil NO3-N in the 1.2- to 2.4-m depth zone when comparing planting time vs. postharvest data. The lack of yield responses and soil NO3-N accumulations at some sites indicate that more efforts should be put into identifying the amount of plant N requirements that can be met from residual soil N, rather than solely from fertilizer N applications.  相似文献   

16.
Soil of the semi-arid Mbulu District is part of the tropical soils, covered with sparse trees, shrubs or grasses in which domestic grazing animals have prevented the wide spread of vegetation cover. The study aimed at determining soil organic carbon (OC), total nitrogen (N), available phosphorus (P) and the combined aboveground plant materials. Six study sites were established in which soil samples were collected at the depths of 0–5, 6–10 and 11–20 cm. Soil samples were analysed for OC, N and P as well as the levels of N and P in the combined aboveground materials of Panicum coloratum and Hyparrhenia filipendula . The percentage concentrations of OC, N and P were high in the top soil than in the deeper soil horizons. However, analysis of variance showed significant differences of OC in some sites whereas no difference for N and P between soil depth classes. OC was highly related with N and P along soil depth classes. It was concluded that the availability of N and P was because of the decomposition of organic matter in the soil. Soil N and P were highly related with the same in the combined aboveground plant materials. It was concluded that the increased concentration of N and P in the soil resulted into availability of the same in P. coloratum and H. filipendula. There was a very high variation in N and P among sites with different levels of intensity of grazing. It was concluded that grazing animals contributes to the redistribution of soil elements in the rangelands because they graze upon plant parts but the excreta are dropped away from the grazed spot.  相似文献   

17.
1. Piper arieianum, an evergreen, understorey shrub of lowland moist forests of Central and South America, exhibits marked seasonal variation in reproductive activity even though climatic variation is low at the study site. Despite a lack of climatic seasonality, previous experimental leaf removal suggested that carbohydrate accumulation is seasonal, occurring prior to flowering.
2. We first tested the hypothesis that carbohydrates necessary for reproduction are accumulated prior to flowering, rather than during or after. By measuring non-structural carbohydrate production in the form of glucose and starch we found that the concentration of these reserves is greatest 1–3months before flowering, decreasing by 50% during peak fruit maturation.
3. The hypothesis that reproduction was the cause of this decrease in carbohydrate reserves was then tested by comparing reserves in plants that were prevented from flowering with those that flowered and produced fruit naturally. As predicted, reserves declined more in flowering than in non-flowering plants. A smaller decline in reserves of non-flowering plants was accompanied by greater stem and leaf production, suggesting that stored carbohydrates are also required for growth.
4. Because concentrations of non-structural carbohydrates were similar in roots, stems and leaves, and because the greatest amount of plant biomass is in stems for plants of a range of sizes, stems appear to be the main storage site of carbohydrate reserves in this plant species.
5. These results, together with previous studies, demonstrate that the impact of leaf herbivory on seed production in P. arieianum depends on the timing of that herbivory relative to the accumulation and use of non-structural carbohydrates.  相似文献   

18.

Background and aims

Nutrient resorption from the senesced to the green leaves can help a plant re-use elements, thus improving adaptability and persistence. How the resorption of nitrogen (N), phosphorus (P) and potassium (K) varies among differently aged lucerne (Medicago sativa) stands and how they correlate to their stoichiometry in the leaves and soil remain uncertain. This study aimed to analyze the resorption efficiencies (REs) of N, P and K and their possible correlations with stoichiometric ratios in the plant and soil.

Methods

The concentrations of plant N, P and K and soil N, P, K and carbon (C) were measured under lucerne stands established in different years, and stoichiometric ratios and REs were calculated. The relationships of REs with stoichiometric ratios were analyzed.

Results

The nitrogen resorption efficiency (NRE) was quite variable among the different stands and tended to rise and then drop with stand age, ranging from 4.6 to 33.7 % with an average of 16.2 %. The phosphorus resorption efficiency (PRE) tended to increase with stand age, ranging from 11.1 to 38.3 % with an average of 27.3 %. The potassium resorption efficiency (KRE) increased with stand age, ranging from 21.0 to 49.8 % with an average of 36.9 %. The KRE was generally highest, followed by the PRE, and the NRE was lowest. Leaf N:P and N:K generally decreased and then increased with stand age, while the K:P increased and then decreased. In the green leaves, total N concentration increased significantly with NRE and PRE, and total P concentration rose significantly with PRE, while in the senesced leaves, total N concentration decreased significantly with NRE and KRE. The N:P in the green leaves decreased significantly with PRE and the K:P in the senesced leaves dropped with NRE. Furthermore, the REs decreased with total soil nutrition status if there was any correlation. The REs increased significantly with soil ammonium N concentration, while the NRE decreased significantly with soil nitrate N concentration. In addition, soil available P concentration at most depths led to significant increases in NRE and KRE. However, the REs were rarely influenced by stoichiometric ratios of soil N, P, K and C.

Conclusions

The NRE rose and then dropped, and the PRE and KRE both increased with stand age. Leaf N:P and N:K generally decreased and then increased with stand age, while K:P increased and then decreased. The concentrations of N, P and K increased in the green leaves and decreased in the senesced leaves with REs if there was any correlation. The REs decreased with total soil nutrition status if there was any correlation. However, the REs hardly changed with stoichiometric ratios in the leaves and soil under differently aged lucerne stands. There appear to be no correlations between REs and element stoichiometries.  相似文献   

19.
罗汉果生长动态与叶片矿质营养的研究   总被引:3,自引:0,他引:3  
漆小雪  李锋  韦霄   《广西植物》2005,25(6):602-606
对一年生罗汉果种薯苗的生长发育状况和植株体内矿质营养元素含量进行监测,结果表明,6~9月 为罗汉果植株生长速度最快时期,叶片中的N、P、K等矿质营养元素浓度的月变化则随着生长发育的进程而 变化,其中N的浓度变化有两个峰点,分别在5月、7月,P、K的浓度变化最高点分别在6月、7月,N、P和K 的浓度变化最低点分别在11月、10月。相关分析表明,罗汉果植株的月生长总量及各级侧蔓的月生长量与叶 片中的N、P、K含量变化有显著的负相关关系。因此,要提高罗汉果产量,施肥的重点应放在5~9月。6月 以前以有机肥、磷肥为主,施以适量速效性氮肥,10月以后应根据植株的生长状况和叶片中N、P、K含量,施 用适量的N、P、K肥,防止早衰。  相似文献   

20.
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号