首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   2篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
1.
Summary The gene encoding human esterase D (EsD), a member of the nonspecific esterase family, is a useful genetic marker for retinoblastoma (RB) and Wilson's disease. Previously we identified a cDNA clone from this gene and determined its chromosomal location. In this report, we present the complete cDNA sequence of the human EsD gene. A long open reading frame encoded a predicted protein of 282 amino acids with molecular weight of 30 kD. A computer-assisted search of a protein sequence data base revealed homology with two other esterases, acetylcholinesterase of Torpedo and esterase-6 of Drosophila. Homologous region were centered around presumptive active sites, suggesting that the catalytic domains of the esterases are conserved during evolution. Three genomic clones of this gene were also isolated and characterized by restriction mapping. At least ten exons were distributed over a 35-kb (kilobase pair) region; each exon contained an average of 100 basepairs (bp). A polymorphic site for Apa I, located within an intron of the esterase D gene, can be used to identify chromosome 13 carrying defective RB alleles within retinoblastoma families.  相似文献   
2.
We examined the importance of nitrogen inputs from groundwater and runoff in a small coastal marine cove on Cape Cod, MA, USA. We evaluated groundwater inputs by three different methods: a water budget, assuming discharge equals recharge; direct measurements of discharge using bell jars; and a budget of water and salt at the mouth of the Cove over several tidal cycles. The lowest estimates were obtained by using a water budget and the highest estimates were obtained using a budget of water and salt at the Cove mouth. Overall there was more than a five fold difference in the freshwater inputs calculated by using these methods. Nitrogen in groundwater appears to be largely derived from on site septic systems. Average nitrate concentrations were highest in the region where building density was greatest. Nitrate in groundwater appeared to behave conservatively in sandy sediments where groundwater flow rates were high (> 11/m2/h), indicating that denitrification was not substantially reducing external nitrogen loading to the Cove. Nitrogen inputs from groundwater were approximately 300 mmol-N/m3/y of Cove water. Road runoff contributed an additional 60 mmol/m3/y. Total nitrogen inputs from groundwater and road runoff to this cove were similar in magnitude to river dominated estuaries in urbanized areas in the United States.  相似文献   
3.
In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids.  相似文献   
4.
The glutathionyl-modified aldose reductase (GS-ALR2) is unique, among different S-thiolated enzyme forms, in that it displays a lower specific activity than the native enzyme (ALR2). Specific interactions of the bound glutathionyl moiety (GS) with the ALR2 active site, were predicted by a low perturbative molecular modelling approach. The outcoming GS allocation, involving interactions with residues relevant for catalysis and substrate allocation, explains the rationale behind the observed differences in the activity between GS-ALR2 and other thiol-modified enzyme forms. The reversible S-glutathionylation of ALR2 observed in cultured intact bovine lens undergoing an oxidative/non oxidative treatment cycle is discussed in terms of the potential of ALR2/GS-ALR2 inter-conversion as a response to oxidative stress conditions.  相似文献   
5.
Zhu MM  Rempel DL  Zhao J  Giblin DE  Gross ML 《Biochemistry》2003,42(51):15388-15397
We applied a new method, "protein-ligand interaction using mass spectrometry, titration, and H/D exchange" (PLIMSTEX) [Zhu, M. M. (2003) J. Am. Chem. Soc. 125, 5252-5253], to determine the conformational changes, binding stoichiometry, and binding constants for Ca(2+) interactions with calmodulin (CaM) under varying conditions of electrolyte identity and ionic strength. The outcome shows that CaM becomes less solvent-accessible and more compact upon Ca(2+)-binding, as revealed by the PLIMSTEX curve. The formation of CaM-4Ca species is the biggest contributor to the shape of the titration curve, indicating that the formation of this species accounts for the largest conformational change in the stepwise Ca(2+) binding. The Ca(2+)-binding constants, when comparisons permit, agree with those in the literature within a factor of 3. The binding is influenced by ionic strength and the presence of other cations, although many of these cations do not cause conformational change in apo-CaM. Furthermore, Ca(2+)-saturated CaM exhibits larger protection and higher Ca(2+) affinity in media of low rather than high ionic strength. Both Ca(2+) and Mg(2+) bind to CaM with different affinities, causing different conformational changes. K(+), if it does bind, causes no detectable conformational change, and interactions of Ca(2+) with CaM in the presence of Li(+), Na(+), and K(+) occur with similar affinities and associated changes in solvent accessibility. These metal ion effects point to nonspecific rather than competitive binding of alkali-metal ions. The rates of deuterium uptake by the various CaM-xCa species follow a three-group (fast, intermediate, slow), pseudo-first-order kinetics model. Calcium binding causes the number of amide hydrogens to shift from the fast to the slow group. The results taken together not only provide new insight into CaM but also indicate that both PLIMSTEX and kinetic modeling of H/D exchange data may become general methods for probing protein conformations and quantifying protein-ligand interactions.  相似文献   
6.
ζ-Crystallin is an NADPH-binding protein consisting of four identical 35 kD subunits. The protein possesses quinone oxidoreductase activity, and is present in large amounts in the lenses of camelids, certain hystricomorphic rodents, and the Japanese tree frog, and in lower catalytic amounts in certain tissues of various species. In this study, recombinant methods were used to produce substantial quantities of his-tagged recombinant mouse ζ-crystallin, which was then purified to homogeneity. The yield of pure recombinant mouse ζ-crystallin was five times that obtained previously for purification of recombinant guinea pig ζ-crystallin. The quinone oxidoreductase activity of purified his-tagged recombinant mouse ζ-crystallin was comparable to that of purified native guinea pig lens ζ-crystallin, and to that previously reported for recombinant guinea pig ζ-crystallin. The method permits production of substantial amounts of recombinant ζ-crystallin for conducting studies on the biological role of this interesting protein, which exists in such high concentration in the lenses of certain species.  相似文献   
7.
Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.  相似文献   
8.
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses.  相似文献   
9.
The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the "stainability" but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain.  相似文献   
10.
Relative predominance of each of five probiotic strains was investigated in the ileum of weaned pigs, compared with that in feces, when administered in combination at c. 5 x 10(9) CFU day(-1) for 28 days. Probiotic was excreted at 10(6)-10(9) CFU g(-1) feces, while ileal survival ranged from 10(2) to 10(6) CFU g(-1) digesta. In contrast to the feces, where Lactobacillus murinus DPC6002 predominated, the bacteriocin-producing Lactobacillus salivarus DPC6005 dominated over coadministered strains both in the ileum digesta and in mucosa. Probiotic administration did not alter counts of culturable fecal Lactobacillus or Enterobacteriaceae but higher ileal Enterobacteriaceae were observed in the ileal digesta of probiotic-fed pigs (P<0.05). We observed decreased CD25 induction on T cells and monocytes (P<0.01) and decreased CTLA-4 induction (P<0.05) by the mitogen phytohemagglutinin on CD4 T cells from the probiotic group. Probiotic treatment also increased the proportion of CD4+ CD8+ T cells within the peripheral T-cell population and increased ileal IL-8 mRNA expression (P<0.05). In conclusion, superior ileal survival of L. salivarius compared with the other coadministered probiotics may be due to a competitive advantage conferred by its bacteriocin. The findings also suggest that the five-strain combination may function as a probiotic, at least in part, via immunomodulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号