首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

3.
Hepatocytes can be sensitized to tumor necrosis factor (TNF)-alpha toxicity by repression of NF-kappaB activation or inhibition of RNA synthesis. To determine whether both forms of sensitization lead to TNF-alpha cytotoxicity by similar mechanisms, TNF-alpha-induced cell death in RALA255-10G hepatocytes was examined following infection with an adenovirus, Ad5IkappaB, that blocks NF-kappaB activation or following cotreatment with actinomycin D (ActD). TNF-alpha treatment of Ad5IkappaB-infected cells resulted in 44% cell death within 6 h. ActD/TNF-alpha induced no death within 6 h but did lead to 37% cell death by 24 h. In both instances, cell death occurred by apoptosis and was associated with caspase activation, although caspase activation in ActD-sensitized cells was delayed. CrmA and chemical caspase inhibitors blocked Ad5IkappaB/TNF-alpha-induced cell death but did not inhibit ActD/TNF-alpha-induced apoptosis. A Fas-associated protein with death domain (FADD) dominant negative decreased Ad5IkappaB/TNF-alpha- and ActD/TNF-alpha-induced cell death by 81 and 47%, respectively. However, downstream events differed, since Ad5IkappaB/TNF-alpha but not ActD/TNF-alpha treatment caused mitochondrial cytochrome c release. These results suggest that NF-kappaB inactivation and inhibition of RNA synthesis sensitize RALA255-10G hepatocytes to TNF-alpha toxicity through distinct cell death pathways that diverge below the level of FADD. ActD-induced hepatocyte sensitization to TNF-alpha cytotoxicity occurs through a FADD-dependent, caspase-independent pathway of apoptosis.  相似文献   

4.
The death domain kinase Rip1 is recruited to the tumor necrosis factor receptor type 1 and mediates the IkappaB kinase and p38 MAP kinase pathways. In response to tumor necrosis factor-alpha (TNF-alpha), we find Rip1 phosphorylated and ubiquitinated, suggesting that Rip1 phosphorylation may stimulate its ubiquitination. To address the contribution of the kinase activity of Rip1 to its ubiquitination and to TNF-alpha signaling, we introduced wild type Rip1 and a kinase-inactive form of Rip1, Rip1D138N, into rip1-/- murine embryonic fibroblast cells by retroviral infection. TNF-alpha-induced ubiquitination of Rip1 is observed in Rip1D138N cells, supporting the argument that Rip1 autophosphorylation is not required for Rip1 ubiquitination. TNF-alpha-induced Ikk and p38 MAP kinase activation is normal, and the Rip1D138N cells are resistant to TNF-alpha-induced cell death, indicating that the kinase activity of Rip1 is not required to mediate its antiapoptotic functions. In the absence of Traf2, TNF-alpha-induced ubiquitination of Rip1 is impaired, suggesting that Traf2 may be the E3 ubiquitin ligase responsible for the TNF-alpha-dependent, ubiquitination of Rip1. Finally, recruitment of the ubiquitinated Tak1 complex is dependent on the presence of Rip1, suggesting that Rip1 ubiquitination rather than its phosphorylation is critical in signaling.  相似文献   

5.
We examined the regulatory role of a reduction/oxidation (redox) control protein, thioredoxin (TRX), in tumor necrosis factor-alpha (TNF-alpha)-induced p38 MAP kinase activation and p38 MAP kinase-mediated cytokine expression utilizing TRX-transfected murine L929 cells (TRX14). The results showed that TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production by TRX 14 were less than those by the parental L cells and the control transfected L cells (Neo-1). SB 203580 as the specific inhibitor for p38 MAP kinase activity inhibited TNF-alpha-induced IL-6 production by the parental L cells, indicating that TNF-alpha-activated p38 MAP kinase regulates IL-6 production by the cell lines used in this study. These results showed that overexpression of TRX negatively regulates p38 MAP kinase activation and p38 MAP kinase-mediated IL-6 production by TNF-alpha-stimulated cells, indicating that TRX is critical for p38 MAP kinase activation which regulates cytokine expression.  相似文献   

6.
7.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

8.
In catabolic conditions, such as cancer cachexia, a balance favouring a cytokine environment culminates in muscle destruction. Utilising an in vitro model to mimic muscle wasting, we elucidate here the multifaceted roles that one such cytokine, TNF-alpha, invokes in the degeneration process. Treatment of C2 skeletal myoblasts with TNF-alpha not only suppresses morphological and biochemical differentiation, but following an initial wave of proliferation, and of survival (24 h), induces apoptosis. Investigating the mechanisms underlying these diverse actions of TNF-alpha, we demonstrate that cell replication is dependent on rapid and sustained activation of MAP kinase. Map kinase is not, however, central to the death process, which is associated with a progressive rise in caspase-8 activity, and is accompanied by sustained activation of JNK1 and transient activation of JNK2. Caspase inhibition caused a dose responsive reduction in cell death, while inhibition of the JNKs caused a significant increase in apoptosis. We further report that PI3 kinase is not involved in conferring early protection against TNF-alpha-induced death. By contrast, inhibition of NF-kappaB in the presence of TNF-alpha culminates in increased cell cycle progression, decreased gadd45beta expression and significant and precociously increased cell death, when compared with TNF-alpha alone. Our results begin to characterise the mechanisms underlying the acute mitogenic and anti-apoptotic roles of TNF-alpha, which appear to be defined by a balance between MAP kinase, Jun kinase (JNK), NF-kappaB and gadd45beta. They establish that inhibition of any one of these molecules, as may occur following caspase activation, could eliminate vital stem cells required for skeletal muscle regeneration during chronic catabolic conditions.  相似文献   

9.
Alcoholic liver disease is associated with an increase in the number of necrotic and apoptotic liver parenchymal cells. Part of this injury is mediated by TNF-alpha. Ethanol exposure sensitizes cells to the cytotoxic effects of TNF-alpha. This may be due, in part, to the increased propensity of the mitochondria in ethanol-exposed cells to induction of mitochondrial permeability transition (MPT) by various agents, including the proapoptotic protein Bax. This idea is supported by the observation that increased cell death induced by TNF-alpha in ethanol-exposed cells was dependent on development of the MPT. In the present study, we elucidate the pathways through which ethanol exposure enhances TNF-alpha induction of the MPT and the resulting cytotoxicity. Specifically, ethanol-exposed cells display caspase-8- and Bid-independent cell killing during TNF-alpha treatment. Moreover, the ethanol-enhanced pathway is dependent on p38 MAPK signaling, which brings about caspase-3 activation, mitochondrial depolarization, accumulation of cytochrome c in the cytosol, and the translocation of Bax to the mitochondria. Additionally, ethanol-exposed cells display a blunting of TNF-alpha-induced Akt activation and Bcl-2 antagonist of cell death phosphorylation that may account, in part, for the increased sensitivity of the mitochondria to Bax-mediated damage.  相似文献   

10.
11.
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity.  相似文献   

12.
13.
Cellular signaling by TNF-alpha is mediated through activation of mitogen activated protein (MAP) kinases. In particular, p38 MAP kinase is activated in mononuclear phagocytes and may be important in sustaining TNF-alpha activity. Here, we compared the activation and mutual regulation of p38 MAP kinase and TNF-alpha by MTB in human alveolar macrophages (AM) and blood monocytes (MN). AM and autologous MN were prepared, and stimulated by MTB at 1:1 (bacteria/cell). MAP kinase activation was assessed by immunoprecipitation and kinase activity. TNF-alpha mRNA was assessed by real-time RT-PCR, and TNF-alpha immunoreactivity was assessed by ELISA. MTB-induced p38MAP kinase rapidly in AM as compared to MN, and inhibition of p38 MAP kinase by SB203580 reduced both TNF-alpha mRNA and protein. Activation of ERK (1/2) by MTB followed similar kinetics in both AM and MN. TNF-alpha produced by MTB sustained p38 MAP kinase activation in MN only. These data suggest that interaction of resident pulmonary macrophages and the more immature MN with MTB differ with regard to both p38 MAP kinase activation and TNF-alpha expression.  相似文献   

14.
Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.  相似文献   

15.
CD4(+) and CD8(+) T cells play specific roles during an immune response. Different molecular mechanisms could regulate the proliferation, death, and effector functions of these two subsets of T cells. The p38 mitogen-activated protein (MAP) kinase pathway is induced by cytokines and environmental stress and has been associated with cell death and cytokine expression. Here we report that activation of the p38 MAP kinase pathway in vivo causes a selective loss of CD8(+) T cells due to the induction of apoptosis. In contrast, activation of p38 MAP kinase does not induce CD4(+) T-cell death. The apoptosis of CD8(+) T cells is associated with decreased expression of the antiapoptotic protein Bcl-2. Regulation of the p38 MAP kinase pathway in T cells is therefore essential for the maintenance of CD4/CD8 homeostasis in the peripheral immune system. Unlike cell death, gamma interferon production is regulated by the p38 MAP kinase pathway in both CD4(+) and CD8(+) T cells. Thus, specific aspects of CD4(+) and CD8(+) T-cell function are differentially controlled by the p38 MAP kinase signaling pathway.  相似文献   

16.
17.
The role of p38 mitogen-activated protein (MAP) kinase in the activation of human neutrophils and repression of TNF-alpha-induced apoptosis in response to plasma opsonized crystals of calcium pyrophosphate dihydrate (CPPD) was investigated. We monitored the endogenous phosphotransferase activity of p38 kinase in neutrophils stimulated with CPPD crystals (25 mg/ml) alone or in the presence of TNF-alpha (10 ng/ml), and with TNF-alpha alone. CPPD crystals induced a 2-fold activation of p38 kinase activity over the basal activity that was observed in untreated neutrophils. Furthermore, CPPD crystals repressed the TNF-alpha associated 6-fold induction of p38 kinase phosphotransferase activity to levels associated with CPPD crystal incubation alone in a PD98059 (20 ng/ml) and Wortmannin (100 nM) sensitive manner. Inhibition of CPPD crystal-induced activation of the neutrophil inflammatory response as measured by chemiluminescence, superoxide anion generation and degranulation as determined by myeloperoxidase and lysozyme release was observed in the presence of the specific p38 MAP kinase inhibitor SB203580 (5 microM). CPPD crystal associated repression of TNF-alpha-induced activation of neutrophil apoptosis as determined by DNA fragmentation correlated with the CPPD crystal mediated inhibition of p38 kinase activity, probably through crystal inhibition of caspase 3. Together, our results indicate that the CPPD crystal associated inflammatory response is regulated through the activation of p38 kinase to sub-apoptotic levels, and that the repression of the TNF-alpha-induced apoptosis program in neutrophils is mediated via the repression of caspase 3 mediated apoptosis-associated p38 kinase activity.  相似文献   

18.
Vascular cell adhesion molecule (VCAM)-1 plays a central role in the recruitment of inflammatory cells, and its expression is rapidly induced by proinflammatory cytokines such as TNF-alpha. In the present study, we show that pretreatment with rottlerin, a specific inhibitor of protein kinase C (PKC)-delta, or transient transfection with antisense PKCdelta oligonucleotides significantly inhibits TNF-alpha-induced expression of VCAM-1, but not of intercellular adhesion molecule (ICAM)-1 in human lung epithelium A549 cells. In addition, TNF-alpha was shown to induce the expression of VCAM-1 in a p38 kinase-dependent manner; also, TNF-alpha-induced p38 kinase activation was blocked by inhibition of PKCdelta, suggesting that p38 kinase is apparently situated downstream of PKCdelta in the TNF-alpha-signaling pathway to VCAM-1 expression. Notably, inhibition of the PKCdelta-p38 kinase cascade also attenuated the TNF-alpha-induced adhesion of neutrophils to lung epithelium and the trafficking of leukocytes across the epithelium into the airway lumen in vivo. Together, these findings indicate that signaling via PKCdelta-p38 kinase-linked cascade specifically induces expression of VCAM-1 in lung epithelium in response to TNF-alpha and that this effect is both functionally and clinically significant.  相似文献   

19.
Cdc7 is a serine/threonine kinase that plays essential roles in the initiation of eukaryotic DNA replication and checkpoint response. In previous studies, depletion of Cdc7 by small interfering RNA was shown to induce an abortive S phase that led to the cell cycle arrest in normal human fibroblasts and apoptotic cell death in various cancer cells. Here we report that stress-activated p38 MAP kinase was activated and responsible for apoptotic cell death in Cdc7-depleted HeLa cells. The activation of p38 MAP kinase in the Cdc7-depleted cells was shown to depend on ATR, a major sensor kinase for checkpoint or DNA damage responses. Only the p38 MAP kinase, and not the other stress-activated kinases such as JNK or ERK, was activated, and both caspase 8 and caspase 9 were activated for the induction of apoptosis. Activation of apoptosis in Cdc7-depleted cells was completely abolished in cells treated with small interfering RNA or an inhibitor of the p38 MAP kinase, suggesting that p38 MAP kinase activation was responsible for apoptotic cell death. Taken together, we suggest that the ATR-dependent activation of the p38 MAP kinase is a major signaling pathway that induces apoptotic cell death after depletion of Cdc7 in cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号