首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Tyrosine kinases such as SRC family kinases (SFKs) as well as the mammalian target of rapamycin (mTOR) serine/threonine kinase are often constitutively activated in acute myeloid leukemia (AML) and hence constitute potential therapeutic targets. Here we demonstrate that the epidermal growth factor receptor (EGFR) inhibitor erlotinib, which has previously been shown to mediate antiproliferative/cytotoxic off-target effects in myelodysplastic syndrome (MDS) and AML blasts, reduces SFK overactivation. Erlotinib induced an arrest in the G1 phase of the cell cycle that, in cells with constitutive SFK activation, could be recapitulated by chemical inhibition of SFKs with 3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-α]pyrimidin-4-amine (PP2). Moreover, erlotinib inhibited the phosphorylation of mTOR targets like p70SK6, stimulated the maturation of the autophagic marker LC3 and promoted the formation of autophagosomes. Notably, PP2 and the mTOR inhibitor rapamycin had a similar cell cycle-arresting activity to erlotinib, but neither of these compounds alone induced significant levels of cell death. Altogether, these results suggest that the therapeutic off-target effect of erlotinib may be linked to, yet cannot be entirely explained by, the inhibition of oncogenic signaling via SFKs and mTOR. Thus, combination therapies with erlotinib and rapamycin might be beneficial for MDS and AML patients.  相似文献   

2.
Small molecule inhibitors of protein kinases have emerged as a major class of therapeutic agents for the treatment of hematological malignancies. Both in vitro studies and patient case reports suggest therapeutic potential of the clinical kinase inhibitors erlotinib and gefitinib in acute myeloid leukemia (AML). The drugs' cellular modes of action in AML warrant further investigation as their primary therapeutic target, the epidermal growth factor receptor, is not expressed. We therefore performed SILAC-based quantitative mass spectrometry analyses to a depth of 10,975 distinct phosphorylation sites to characterize the phosphoproteome of KG1 AML cells and its regulation upon erlotinib and gefitinib treatment. Less than 50 site-specific phosphorylations changed significantly, indicating rather specific interference with AML cell signaling. Many drug-induced changes occurred within a network of tyrosine phosphorylated proteins that included Src family kinases (SFKs) and the tyrosine kinases Btk and Syk. We further performed quantitative chemical proteomics in KG1 cell extracts and identified SFKs and Btk as direct cellular targets of both erlotinib and gefitinib. Taken together, our data suggest that cellular perturbation of SFKs and/or Btk translates into rather specific signal transduction inhibition, which in turn contributes to the antileukemic activity of erlotinib and gefitinib in AML.  相似文献   

3.
Erlotinib was originally developed as an epidermal growth factor receptor (EGFR)-specific inhibitor for the treatment of solid malignancies, yet also exerts significant EGFR-independent antileukemic effects in vitro and in vivo. The molecular mechanisms underlying the clinical antileukemic activity of erlotinib as a standalone agent have not yet been precisely elucidated. Conversely, in preclinical settings, erlotinib has been shown to inhibit the constitutive activation of SRC kinases and mTOR, as well as to synergize with the DNA methyltransferase inhibitor azacytidine (a reference therapeutic for a subset of leukemia patients) by promoting its intracellular accumulation. Here, we show that both erlotinib and gefitinib (another EGFR inhibitor) inhibit transmembrane transporters of the ATP-binding cassette (ABC) family, including P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP), also in acute myeloid leukemia (AML) cells that do not overexpress these pumps. Thus, inhibition of drug efflux by erlotinib and gefitinib selectively exacerbated (in a synergistic or additive fashion) the cytotoxic response of KG-1 cells to chemotherapeutic agents that are normally extruded by ABC transporters (e.g., doxorubicin and etoposide). Erlotinib limited drug export via ABC transporters by multiple mechanisms, including the downregulation of surface-exposed pumps and the modulation of their ATPase activity. The effects of erlotinib on drug efflux and its chemosensitization profile persisted in patient-derived CD34+ cells, suggesting that erlotinib might be particularly efficient in antagonizing leukemic (stem cell) subpopulations, irrespective of whether they exhibit or not increased drug efflux via ABC transporters.  相似文献   

4.
Erlotinib was originally developed as an epidermal growth factor receptor (EGFR)-specific inhibitor for the treatment of solid malignancies, yet also exerts significant EGFR-independent antileukemic effects in vitro and in vivo. The molecular mechanisms underlying the clinical antileukemic activity of erlotinib as a standalone agent have not yet been precisely elucidated. Conversely, in preclinical settings, erlotinib has been shown to inhibit the constitutive activation of SRC kinases and mTOR, as well as to synergize with the DNA methyltransferase inhibitor azacytidine (a reference therapeutic for a subset of leukemia patients) by promoting its intracellular accumulation. Here, we show that both erlotinib and gefitinib (another EGFR inhibitor) inhibit transmembrane transporters of the ATP-binding cassette (ABC) family, including P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP), also in acute myeloid leukemia (AML) cells that do not overexpress these pumps. Thus, inhibition of drug efflux by erlotinib and gefitinib selectively exacerbated (in a synergistic or additive fashion) the cytotoxic response of KG-1 cells to chemotherapeutic agents that are normally extruded by ABC transporters (e.g., doxorubicin and etoposide). Erlotinib limited drug export via ABC transporters by multiple mechanisms, including the downregulation of surface-exposed pumps and the modulation of their ATPase activity. The effects of erlotinib on drug efflux and its chemosensitization profile persisted in patient-derived CD34+ cells, suggesting that erlotinib might be particularly efficient in antagonizing leukemic (stem cell) subpopulations, irrespective of whether they exhibit or not increased drug efflux via ABC transporters.  相似文献   

5.
BackgroundEpidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects.MethodsSignaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2′-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by β-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation.ResultsGefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH).ConclusionHRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments.General significanceWe furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.  相似文献   

6.
The binding property between a ligand and its receptor is very important for numerous biological processes. In this study, we developed a high epidermal growth factor receptor (EGFR)‐expression cell membrane chromatography (CMC) method to investigate the binding characteristics between EGFR and the ligands gefitinib, erlotinib, canertinib, afatinib, and vandetanib. Competitive binding analysis using gefitinib as the marker was used to investigate the interactions that occurred at specific binding sites on EGFR. The ability of displacement was measured from the HEK293‐EGFR/CMC column on the binding sites occupied by gefitinib for these ligands, which revealed the following order: gefitinib (KD, 8.49 ± 0.11 × 10?7 M) > erlotinib (KD, 1.07 ± 0.02 × 10?6 M) > canertinib (KD, 1.41 ± 0.07 × 10?6 M) > afatinib (KD, 1.80 ± 0.12 × 10?6 M) > vandetanib (KD, 1.99 ± 0.03 × 10?6 M). This order corresponded with the values estimated by frontal displacement analysis and the scores obtained with molecular docking. Furthermore, thermodynamic analysis indicated that the hydrogen bond or Van der Waals force was the main interaction force in the process of EGFR binding to all 5 ligands. Overall, these results demonstrate that a CMC method could be an effective tool to investigate the binding characteristics between ligands and receptors.  相似文献   

7.

Background

Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity.

Methodology/Principal Findings

Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan''s blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic.

Conclusions/Significance

EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.  相似文献   

8.
High-grade gliomas (HGG), are the most common aggressive brain tumours in adults. Inhibitors targeting growth factor signalling pathways in glioma have shown a low clinical response rate. To accurately evaluate response to targeted therapies further in vitro studies are necessary. Growth factor pathway expression using epidermal growth factor receptor (EGFR), mutant EGFR (EGFRvIII), platelet derived growth factor receptor (PDGFR), C-Kit and C-Abl together with phosphatase and tensin homolog (PTEN) expression and downstream activation of AKT and phosphorylated ribosomal protein S6 (P70S6K) was analysed in 26 primary glioma cultures treated with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib and imatinib. Response to TKIs was assessed using 50% inhibitory concentrations (IC(50)). Response for each culture was compared with the EGFR/PDGFR immunocytochemical pathway profile using hierarchical cluster analysis (HCA) and principal component analysis (PCA). Erlotinib response was not strongly associated with high expression of the growth factor pathway components. PTEN expression did not correlate with response to any of the three TKIs. Increased EGFR expression was associated with gefitinib response; increased PDGFR-α expression was associated with imatinib response. The results of this in vitro study suggest gefitinib and imatinib may have therapeutic potential in HGG tumours with a corresponding growth factor receptor expression profile.  相似文献   

9.
Lung cancer is a common cause of cancer mortality in the world, largely due to the risk factor of tobacco smoking. The drug therapy at the molecular level includes targeting the epidermal growth factor receptor (EGFR) tyrosine kinase activity by using inhibitors, such as erlotinib (Tarceva) and gefitinib (Iressa). The heterogeneity of disease phenotypes and the somatic mutations presented in patient populations have a great impact on the efficacy of treatments using targeted personalized medicine. In this study, we report on basic physical and chemical properties of erlotinib and gefitinib in three different lung cancer tumor phenotypes, using MALDI instrumentation in imaging mode, providing spatial localization of drugs without chemical labeling. Erlotinib and gefitinib were analyzed in i) planocellular lung carcinoma, ii) adenocarcinoma and iii) large cell lung carcinoma following their deposition on the tissue surfaces by piezo-dispensing, using a controlled procedure. The importance of high-resolution sampling was crucial in order to accurately localize the EGFR tyrosine kinase inhibitors deposited in heterogeneous cancer tissue compartments. This is the first report on personalized drug characterization with localizations at a lateral resolution of 30μm, which allowed us to map these compounds at attomolar concentrations within the lung tumor tissue microenvironments.  相似文献   

10.
Magnolol (MG) and honokiol (HK), two lignans showing anti-inflammatory and anti-oxidant properties and abundantly available in the medicinal plants Magnolia officinalis and M. obovata, were found to enhance HL-60 cell differentiation initiated by low doses of 1,25-dihydroxyvitamin D3 (VD3) and all-trans-retinoic acid (ATRA). Cells expressing membrane differentiation markers CD11b and CD14 were increased from 4% in non-treated control to 8-16% after being treated with 10-30 microM MG or HK. When added to 1 nM VD3, MG or HK increased markers expressing cells from approximately 30% to 50-80%. When either MG or HK was added to 20 nM ATRA, only CD11b, but not CD14, expressing cells were increased from 9% to 24-70%. Under the same conditions, adding MG or HK to VD3 or ATRA treatment further enlarged the G0/G1 cell population and increased the expression of p27(Kip1), a cyclin-dependent kinase inhibitor. Pharmacological studies using PD098059 (a MEK inhibitor), SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) suggested that the MEK pathway was important for VD3 and ATRA-induced differentiation and also its enhancement by MG or HK, the p38 MAPK pathway had a inhibitory effect and the JNK pathway had little influence. It is evident that MG and HK are potential differentiation enhancing agents which may allow the use of low doses of VD3 and ATRA in the treatment for acute promyelocytic leukemia.  相似文献   

11.
All-trans retinoic acid (ATRA) has only limited single agent activity in AML without the PML-RARα fusion (non-M3 AML). In search of a sensitizing strategy to overcome this relative ATRA resistance, we investigated the potency of the HDAC class-I selective inhibitor entinostat in AML cell lines Kasumi-1 and HL-60 and primary AML blasts. Entinostat alone induced robust differentiation of both cell lines, which was enhanced by the combination with ATRA. This “priming” effect on ATRA-induced differentiation was at least equivalent to that achieved with the DNA hypomethylating agent decitabine, and could overall be recapitulated in primary AML blasts treated ex vivo. Moreover, entinostat treatment established the activating chromatin marks acH3, acH3K9, acH4 and H3K4me3 at the promoter of the RARβ2 gene, an essential mediator of retinoic acid (RA) signaling in different solid tumor models. Similarly, RARβ2 promoter hypermethylation (which in primary blasts from 90 AML/MDS patients was surprisingly infrequent) could be partially reversed by decitabine in the two cell lines. Re-induction of the epigenetically silenced RARβ2 gene was achieved only when entinostat or decitabine were given prior to ATRA treatment. Thus in this model, reactivation of RARβ2 was not necessarily required for the differentiation effect, and pharmacological RARβ2 promoter demethylation may be a bystander phenomenon rather than an essential prerequisite for the cellular effects of decitabine when combined with ATRA. In conclusion, as a “priming” agent for non-M3 AML blasts to the differentiation-inducing effects of ATRA, entinostat is at least as active as decitabine, and both act in part independently from RARβ2. Further investigation of this treatment combination in non-M3 AML patients is therefore warranted, independently of RARβ2 gene silencing by DNA methylation.  相似文献   

12.

Background

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), gefitinib and erlotinib have been tested as maintenance therapy in patients with advanced non-small-cell lung cancer (NSCLC). The studies are quite heterogenous regarding study size and populations, and a synopsis of these data could give some more insight in the role of maintenance therapy with TKI.

Methods

In September 2012 we performed a search in the pubmed, EMBASE and Cochrane library databases for randomized phase III trials exploring the role of gefitinib or erlotinib in advanced non-small cell lung cancer. Through a rigorous selection process with specific criteria, five trials (n = 2436 patients) were included for analysis. Standard statistical methods for meta-analysis were applied.

Results

TKIs (gefitinib and erlotinib) significantly increased progression-free survival (PFS) [hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.50–0.76, I2 = 78.1%] and overall survival (HR 0.84, 95% CI 0.76–0.93, I2 = 0.0%) compared with placebo or observation. The PFS benefit was consistent in all subgroups including stage, sex, ethnicity, performance status, smoking status, histology, EGFR mutation status, and previous response to chemotherapy. Patients with clinical features such as female, never smoker, adenocarcinoma, Asian ethnicity and EGFR mutation positive had more pronounced PFS benefit. Overall survival benefit was observed in patients with clinical features such as female, non-smoker, smoker, adenocarcinoma, and previous stable to induction chemotherapy. Severe adverse events were not frequent. Main limitations of this analysis are that it is not based on individual patient data, and not all studies provided detailed subgroups analysis.

Conclusions

The results show that maintenance therapy with erlotinib or gefitinib produces a significant PFS and OS benefit for unselected patients with advanced NSCLC compared with placebo or observation. Given the less toxicity of TKIs than chemotherapy and simple oral administration, this treatment strategy seems to be of important clinical value.  相似文献   

13.
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.  相似文献   

14.
Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.  相似文献   

15.
16.
The epidermal growth factor receptor (EGFR) plays an important role in cancer by activating downstream signals important in growth and survival. Inhibitors of EGFR are frequently selected as treatment for cancer including lung cancer. We performed an unbiased and comprehensive search for EGFR phosphorylation events related to somatic activating mutations and EGFR inhibitor (erlotinib) sensitivity. EGFR immunoprecipitation combined with high resolution liquid chromatography-mass spectrometry and label free quantitation characterized EGFR phosphorylation. Thirty (30) phosphorylation sites were identified including 12 tyrosine (pY), 12 serine (pS), and 6 threonine (pT). Site-specific phosphorylation was monitored by comparing ion signals from the corresponding unmodified peptide. Phosphorylation sites related to activating mutations in EGFR as well as sensitivity to erlotinib were identified using 31 lung cancer cell lines. We identified three sites (pY1092, pY1110, pY1172) correlated with activating mutations and three sites (pY1110, pY1172, pY1197) correlated with erlotinib sensitivity. Five sites (pT693, pY1092, pY1110, pY1172, and pY1197) were inhibited by erlotinib in concentration-dependent manner. Erlotinib sensitivity was confirmed using liquid chromatography coupled to multiple reaction monitoring (LC-MRM) and quantitative Western blotting. This LC-MS/MS strategy can quantitatively assess site-specific EGFR phosphorylation and can identify relationships between somatic mutations or drug sensitivity and protein phosphorylation.  相似文献   

17.
Cytokinins are important purine derivatives that act as redifferentiation-inducing hormones to control many processes in plants. Cytokinins such as isopentenyladenine (IPA) and kinetin are very effective at inducing the granulocytic differentiation of human myeloid leukemia HL-60 cells. We examined the gene expression profiles associated with exposure to IPA using cDNA microarrays and compared the results with those obtained with other inducers of differentiation, such as all-trans retinoic acid (ATRA), 1 alpha,25-dihydroxyvitamin D3 (VD3) and cotylenin A (CN-A). Many genes were up-regulated, and only a small fraction were down-regulated, upon exposure to the inducers. IPA and CN-A, but not ATRA or VD3, immediately induced the expression of mRNA for the calcium-binding protein S100P. The up-regulation of S100P was confirmed at the protein expression level. We also examined the expression of other S100 proteins, including S100A8, S100A9 and S100A12, and found that IPA preferentially up-regulated S100P at the early stages of differentiation. IPA-induced differentiation of HL-60 cells was suppressed by treatment with antisense oligonucleotides against S100P, suggesting that S100P plays an important role in cell differentiation.  相似文献   

18.
19.
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.  相似文献   

20.

Background

Tyrosin kinase inhibitors (TKIs) and monoclonal antibodies aimed to target epidermal growth factor receptor (EGFR) have shown limited effect as monotherapies and drug resistance is a major limitation for therapeutic success. Adjuvant therapies to EGFR targeting therapeutics are therefore of high clinical relevance.

Methods

Three EGFR targeting drugs, Cetuximab, Erlotinib and Tyrphostin AG1478 were used in combination with photodynamic therapy (PDT) in two EGFR positive cell lines, A-431 epidermoid skin carcinoma and WiDr colorectal adenocarcinoma cells. The amphiphilic meso-tetraphenylporphine with 2 sulphonate groups on adjacent phenyl rings (TPPS2a) was utilized as a photosensitizer for PDT. The cytotoxic outcome of the combined treatments was evaluated by cell counting and MTT. Cellular signalling was explored by Western blotting.

Results

PDT as neoadjuvant to Tyrphostin in A-431 cells as well as to Tyrphostin or Erlotinib in WiDr cells revealed synergistic cytotoxicity. In contrast, Erlotinib or Cetuximab combined with neoadjuvant PDT induced an antagonistic effect on cell survival of A-431 cells. Neoadjuvant PDT and EGFR targeting therapies induced a synergistic inhibition of ERK as well as synergistic cytotoxicity only when the EGFR targeting monotherapies caused a prolonged ERK inhibition. There were no correlation between EGFR inhibition by the EGFR targeting monotherapies or the combined therapies and the cytotoxic outcome combination-therapies.

Conclusions

The results suggest that sustained ERK inhibition by EGFR targeting monotherapies is a predictive factor for synergistic cytotoxicity when combined with neoadjuvant PDT.

General significance

The present study provides a rationale for selecting anticancer drugs which may benefit from PDT as adjuvant therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号