首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Xia L  Sun Y  Ding X  Fu Z  Mo X  Zhang H  Yuan Z 《Current microbiology》2005,51(1):53-58
Heterologous DNA fragments (20-kb) associated with Cry1 crystal proteins (protoxins) from a soil-isolated Bacillus thuringiensis strain 4.0718 were isolated and analyzed. RFLP patterns of the PCR products showed that the 20-kb DNA fragments harbored cry1Aa, cry1Ac, cry2Aa, and cry2Ab genes. Furthermore, a 4.2-kb DNA fragment, which contained the promoter, the coding region, and the terminator of cry1Ac gene, was cloned from the 20-kb DNAs by PCR, and then the cry1Ac gene was expressed in an acrystalliferous B. thuringiensis strain 4Q7 by using E. coli-B. thuringiensis shuttle vector pHT3101. SDS-PAGE and microscopy studies revealed that the recombinant could express 130-kDa Cry1Ac protoxin and produce bipyramidal crystals during sporulation. Bioassay results proved that crystal-spore mixture from the recombinant was toxic to Plutella xylostella. This was the first report of cry-type genes present on 20-kb DNA associated with Cry1 protoxins of B. thuringiensis.  相似文献   

2.
By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strain's parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.  相似文献   

3.
The cry1-type genes of Bacillus thuringiensis represent the largest cry gene family, which contains 50 distinct holotypes. It is becoming more and more difficult to identify cry1-type genes using current methods because of the increasing number of cry1-type genes. In the present study, an improved PCR-restriction fragment length polymorphism (PCR-RFLP) method which can distinguish 41 holotypes of cry1-type genes was developed. This improved method was used to identify cry1-type genes in 20 B. thuringiensis strains that are toxic to lepidoptera. The results showed that the improved method can efficiently identify single and clustered cry1-type genes and can be used to evaluate cry1-type genes in novel strain collections of B. thuringiensis. Among the detected cry1-type genes, we identified four novel genes, cry1Ai, cry1Bb, cry1Ja, and cry1La. The bioassay results from the expressed products of the four novel cry genes showed that Cry1Ai2, Cry1Bb2, and Cry1Ja2 were highly toxic against Plutella xylostella, whereas Cry1La2 exhibited no activity. Moreover, Cry1Ai2 had good lethal activity against Ostrinia furnacalis, Hyphantria cunea, Chilo suppressalis, and Bombyx mori larvae and considerable weight loss activity against Helicoverpa armigera.  相似文献   

4.
Molecular cloning and characterization of a novel cry gene, cry32Aa, of Bacillus thuringiensis subsp. yunnanensis was carried out. The Cry32Aa protein was predicted to have a molecular mass of 139.2 kDa and was found to have an unusual 42-amino-acid-long tail at the C terminus. The cry32Aa gene was localized on the 103-MDa plasmid of the organism. Bioassays showed no toxicity against several moths and mosquitoes. However, it exhibited weak toxicity against larvae of the diamondback moth, Plutella xylostella.  相似文献   

5.
The crystal morphology and the profiles of genes encoding protein toxins (Cry and Cyt) were analyzed in 12 Bacillus thuringiensis strains isolated during epizootics in laboratory culture lines of Cydia pomonella, 2 isolates cultured from Leucoma salicis larvae, and 9 reference strains. Epizootic isolates produced crystals of the same bipyramidal shape; however, they revealed a variety of number and type of cry genes. Genes cry1I, cry2Ab, and cry9B were the most frequently observed in epizootic strains. Gene cry1I was noted in of 50% epizootic isolates. Eighty-three percent of them harbored gene cry2Ab. Gene cry9B was found for 42% of strains isolated during epizootics. Three isolates showed the largest number of cry genes and their variety; hence, they were chosen for the toxicity assay of their crystals and spores on C. pomonella larvae. One of them had approximately sixfold higher insecticidal activity than the reference strain B. thuringiensis subsp. kurstaki BTK STANDARD.  相似文献   

6.
Bacillus thuringiensis (Bt) has played an important role in biocontrol of pests. However, insecticidal activity of B. thuringiensis against locusts has been rarely reported. Bt strain BTH-13 exhibiting specific activity to locusts was isolated from a soil sample in China and characterized. Its bipyramidal parasporal crystal is mainly composed of a protein of 129 kDa, and produces a mature toxin of 64 kDa after activation. The pattern of total DNA from BTH-13 showed a large and three small plasmid bands. Known δ-endotoxin genes, cry1Aa, cry1Ab, cry1Ac, cry1C, cry3, cry4 and cry7Aa were not found from strain BTH-13 by PCR amplification. The sequence analysis of a DNA fragment produced by PCR amplification with degenerate cry-selective primers revealed that the fragment encoded a δ-endotoxin segment, which exhibited some similarity to several Cry proteins (41% of the highest similarity to Cry7Ba1). Toxicity tests were performed against Locusta migratoria manilensis, and the results demonstrated that trypsin-treated sporulated cultures and crystal proteins had high toxicity to larval and adult locusts. Cry toxin of BTH-13 was detected on the midguts of treated locusts using immunofluorescent technology, which confirmed the site of action of the crystal proteins in their toxicity for locusts.  相似文献   

7.
The characterization of the strains containing Coleopteran-specific and also putative novel cry genes in Iranian native Bacillus thuringiensis collection is presented. Characterization was based on PCR analysis using 31 general and specific primers for cry1B, cry1I, cry3A, cry3B, cry3C, cry7A, cry8A, cry8B, cry8C, cry14, cry18, cry26, cry28, cry34 and cry35 genes, protein band patterns as well as their insecticidal activity on Xanthogaleruca luteola Mull. larvae. Forty six isolates (65.7%) contained minimum one Coleopteran-active cry gene. Based on universal primers, strains containing cry18 and cry26 genes were the most abundant and represent 27.1% and 24% of the isolates, respectively, whereas cry14, cry3, cry28, cry34, cry35, cry7, cry8 genes were less abundant, found in 14.2, 12.5, 10, 7, 7 and 5.6% of the strains, respectively. Based on specific primers, isolates containing cry1I were the most abundant (48.5%). Two strains containing Coleopteran-active cry genes showed higher activity against X. luteola larvae than B. thuringiensis subsp. morrisoni pathovar tenebrionis. Thirty isolates, when assayed for cry1C, cry5, cry6, cry8b, cry9, cry10, cry11, cry18, cry24 and cry35 genes, showed unexpected size bands. Cloning and sequencing of the amplicons allowed both the identification of known cry genes and the detection of putative novel cry1C sequences.  相似文献   

8.
Bacillus thuringiensis 1–3, isolated from a Korean soil sample, was determined to belong to ssp. aizawai (H7) type by an H antiserum agglutination test, and produced bipyramidal-shaped crystal proteins with a molecular weight of 130 kDa. PCR analysis with specific cry gene primers showed that B. thuringiensis 1–3 contained cry1Aa, cry1Ab, cry1C, cry1D and cry2A genes, differing from that of serovar of aizawai (reference strain) which contains cry1Aa, cry1Ab, cry1C and cry1D genes. In contrast to the reference strain, B. thuringiensis aizawai showed insecticidal activity against Plutella xylostella larvae, the B. thuringiensis 1–3 showed insecticidal activity against not only P. xylostella, but also Aedes aegypti, owing to its Cry2A crystal protein. In this study, we modified the plasmid capture system (PCS) through in vitro transposition to clone small cryptic plasmids from B. thuringiensis 1–3. Fifty-three clones were acquired, and their sizes were approximately 10 kb. Based on the sequence analysis, they were classified into four groups, showing similarities with four known B. thuringiensis plasmids, pGI3, pBMB175, pGI1 and pGI2, respectively. One of the pGI3-like clones, pBt1–3, was fully sequenced, and its putative open reading frames (ORFs), Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified. The structure of pBt1–3 showed high similarity with pGI3, which is of the rolling-circle replication (RCR) group VI family.  相似文献   

9.
A PCR-restriction fragment length polymorphism method for identification of cry1I-type genes from Bacillus thuringiensis was established by designing a pair of universal primers based on the conserved regions of the genes to amplify 1,548-bp cry1I-type gene fragments. Amplification products were digested with the Bsp119I and BanI enzymes, and four kinds of known cry1I-type genes were successfully identified. The results showed that cry1I-type genes appeared in 95 of 115 B. thuringiensis isolates and 7 of 13 standard strains. A novel cry1I-type gene was found in one standard strain and six isolates. The novel cry1I gene was cloned from B. thuringiensis isolate Btc007 and subcloned into vector pET-21b. Then it was overexpressed in Escherichia coli BL21(DE3). The expressed product was shown to be toxic to the diamondback moth (Plutella xylostella), Asian corn borer (Ostrinia furnacalis), and soybean pod borer (Leguminivora glycinivorella). However, it was not toxic to the cotton bollworm (Helicoverpa armigera), beet armyworm (Spodoptera exigua), or elm leaf beetle (Pyrrhalta aenescens) in bioassays. Subsequently, the Cry protein encoded by this novel cry gene was designated Cry1Ie1 by the B. thuringiensis δ-endotoxin nomenclature committee.  相似文献   

10.
11.
A recombinant gene expressing a Cry1Ac-GFP fusion protein with a molecular mass of approximately 160 kD was constructed to investigate the expression of cry1Ac, the localization of its gene product Cry1Ac, and its role in crystal development in Bacillus thuringiensis. The cry1Ac-gfp fusion gene under the control of the cry1Ac promoter was cloned into the plasmid pHT304, and this construct was designated pHTcry1Ac-gfp. pHTcry1Ac-gfp was transformed into the crystal-negative strain, HD-73 cry, and the resulting strain was named HD-73(pHTcry1Ac-gfp). The gfp gene was then inserted into the large HD-73 endogenous plasmid pHT73 and fused with the 3′ terminal of the cry1Ac gene by homologous recombination, yielding HD-73Φ(cry1Ac-gfp)3534. Laser confocal microscopy and Western blot analyses showed for the first time that the Cry1Ac-GFP fusion proteins in both HD-73(pHTcry1Ac-gfp) and HD-73Φ(cry1Ac-gfp)3534 were produced during asymmetric septum formation. Surprisingly, the Cry1Ac-GFP fusion protein showed polarity and was located near the septa in both strains. There was no significant difference between Cry1Ac-GFP and Cry1Ac in their toxicity to Plutella xylostella larvae.  相似文献   

12.
13.
Nematicidal Bacillus thuringiensis (Bt) strains were isolated from forests in Zhejiang, China for further characterisation. PCR analysis was performed with nine pairs of primers specific for cry1, cry2, cry3, cry4, cry5, cry6, cry9, cry11 and cry13 to characterise and classify cry gene groups from Bt isolates. The isolates from individual cry groups were tested for nematicidal activity against the pinewood nematode Bursaphelenchus xylophilus, which is implicated in pine wilt disease. PCR identified 14 different categories of cry gene combinations, indicating a large diversity of cry genes. The cry1 gene was by far the most abundant in Bt isolates and was found in 68% of samples. The Bt isolates zjfc85 and zjfc392 were from two distinct classes, but shared the same cry5 amplification profile and the same ~130 kDa protein; they had the highest nematicidal activity against pinewood nematode during the 48 h exposure tests, resulting in 90 and 59% mortality (9% of mortality under control conditions), respectively. The ~130 kDa Cry protein from isolate zjfc85 was purified and named as Cry5Ba3. Bioassay results indicated pinewood nematode was highly susceptible to Cry5Ba3 and exhibited profound growth abnormalities after exposure to Cry5Ba3. Our results are a novel finding and provide a potential strategy to manage pine wilt disease caused by B. xylophilus based on a nematicidal Bt.  相似文献   

14.
A strain of Bacillus thuringiensis with dual toxicity was isolated from Korean soil samples and named K2. K2 was determined as ssp. kurstaki (H3a3b3c) by serological test and produced bipyramidal-shaped parasporal inclusions. The plasmid and protein profiles of B. thuringiensis K2 were different from those of the reference strain, ssp. kurstaki HD-1. To verify gene type of B. thuringiensis K2, PCR analysis with specific cry gene primers was performed. The result showed that B. thuringiensis K2 had cry1Aa, cry1Ab, cry1C, and cry1D type genes, whereas ssp. kurstaki HD-1 had cry1Aa, cry1Ab, cry1Ac, and cry2 type genes. In addition, B. thuringiensis K2 had high toxicity against Spodoptera exigua and Culex pipiens, whereas B. thuringiensis ssp. kurstaki HD-1 does not have high toxicity against these two insect species. Received: 19 January 2001 / Accepted: 21 February 2001  相似文献   

15.
Diatraea saccharalis (F.) (Lepidoptera: Pyralidae) is a pest that causes great economic losses to sugarcane producers in Mexico. In order to obtain alternatives for control of this pest, several Bacillus thuringiensis strains (native and from the Howard Dulmage collection) were tested. In bioassays, strains HD-133, HD-551, GM-7, GM-10, and GM-34 caused more than 50% mortality with a 50 g/ml spore-crystal complex concentration, and were selected as toxic strains. The lowest LC50 value corresponded to GM-34 (33.21 g/ml). Cry1B and cry1C genes were detected by PCR analysis in the toxic strains. HD-133 and GM-10 habored cry1C gene, HD-551 and GM-7 strains harbored cry1B gene, while GM34 strain did not contain cry1B nor cry1C. An additional PCR analysis was performed to detect cry1A-type genes. All the toxic strains habor at least one cry1A-type gene. Immunoblotting revealed that all strains cross-reacted with an antiCry1A, and only the HD-551 gave a positive signal with antiCry1B polyclonal antisera. GM-7 crystal protein showed no cross-reaction with polyclonal Cry1B antiserum. The toxicity of these strains may be related to some member of the Cry1A toxin class.  相似文献   

16.
Mexico is located in a transition zone between the Nearctic and Neotropical biogeographical regions and contains a rich and unique biodiversity. A total of 496 Bacillus thuringiensis strains were isolated from 503 soil samples collected from the five macroregions of the country. The characterization of the strain collection provided useful information on the ecological patterns of distribution of B. thuringiensis and opportunities for the selection of strains to develop novel bioinsecticidal products. The analysis of the strains was based on multiplex PCR with novel general and specific primers that could detect the cry1, cry3, cry5, cry7, cry8, cry9, cry11, cry12, cry13, cry14, cry21, and cyt genes. The proteins belonging to the Cry1 and Cry9 groups are toxic for lepidopteran insects. The Cry3, Cry7, and Cry8 proteins are active against coleopteran insects. The Cry5, Cry12, Cry13, and Cry14 proteins are nematocidal. The Cry11, Cry21, and Cyt proteins are toxic for dipteran insects. Six pairs of general primers are used in this method. Strains for which unique PCR product profiles were obtained with the general primers were further characterized by additional PCRs with specific primers. Strains containing cry1 genes were the most abundant in our collection (49.5%). Thirty-three different cry1-type profiles were identified. B. thuringiensis strains harboring cry3 genes represented 21.5% of the strains, and 7.9% of the strains contained cry11 and cyt genes. cry7, cry8, and cry9 genes were found in 0.6, 2.4, and 2.6% of the strains, respectively. No strains carrying cry5, cry12, cry13, cry14, or cry21 genes were found. Finally, 14% of the strains did not give any PCR product and did not react with any polyclonal antisera. Our results indicate the presence of strains that may harbor potentially novel Cry proteins as well as strains with combinations of less frequently observed cry genes.  相似文献   

17.
During sporulation, Bacillus thuringiensis produces insecticidal crystal inclusions (Cry proteins) encoded by cry genes. In fed-batch cultures (FBCs), spores and Cry protein yields are usually low, so we therefore studied the pattern of metabolic changes occurring in batch cultures and FBCs of a B. thuringiensis strain having a cry1Aa promoter-lacZ fusion, and their effect on sporulation and cry1A gene expression. In FBCs, there was a redirection of bacterial metabolism and a reduction in the specific growth rate during feeding, even when the nutrient concentration was higher than at the beginning of batch culture. These physiological changes suggest that the transition state is set up during feeding and this set-up seems to have a negative effect on both sporulation and cry1Aa expression. When the filtrate of a culture in the transition state was added to a batch culture early in the first exponential growth phase, it delayed sporulation and cry1Aa expression, thus suggesting that a soluble cellular factor that blocked sporulation might be excreted during the transition state. Citrate production usually started during the transition state but, when a medium rich in free amino acids was fed, citrate was produced from the first growth phase and sporulation was nearly blocked.  相似文献   

18.
The aim of this study was to characterize new Bacillus thuringiensis strains that have a potent insecticidal activity against Ephestia kuehniella larvae. Strains harboring cry1A genes were tested for their toxicity, and the Lip strain showed a higher insecticidal activity compared to that of the reference strain HD1 (LC50 of Lip and HD1 were 33.27 and 128.61 μg toxin/g semolina, respectively). B. thuringiensis Lip harbors and expresses cry1Aa, cry1Ab, cry1Ac, cry1Ad and cry2A. DNA sequencing revealed several polymorphisms in Lip Cry1Aa and Cry1Ac compared to the corresponding proteins of HD1. The activation process using Ephestia kuehniella midgut juice showed that Lip Cry1A proteins were more stable in the presence of larval proteases. Moreover, LipCry1A proteins exhibited higher insecticidal activity against these larvae. These results indicate that Lip is an interesting strain that could be used as an alternative to the worldwide used strain HD1.  相似文献   

19.
The characterization of selected Bacillus thuringiensis strains isolated from different Latin America countries is presented. Characterization was based on their insecticidal activity against Aedes aegypti, Culex quinquefasciatus, and Anopheles albimanus larvae, scanning electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and plasmid profiles as well as PCR analysis using novel general and specific primers for cry and cyt genes encoding proteins active against mosquitoes (cyt1, cyt2, cry2, cry4A, cry4B, cry10, cry11, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39, and cry40). Strains LBIT315, LBIT348, and IB604 showed threefold higher mosquitocidal activity against A. aegypti and C. quinquefasciatus larvae than B. thuringiensis subsp. israelensis and displayed high similarities with the B. thuringiensis subsp. israelensis used in this study with regard to protein and plasmid profiles and the presence of cry genes. Strain 147-8906 has activity against A. aegypti similar to that of B. thuringiensis subsp. israelensis but has different protein and plasmid profiles. This strain, harboring cry11, cry30, cyt1, and cyt2 genes, could be relevant for future resistance management interventions. Finally, the PCR screening strategy presented here led us to identify a putative novel cry11B gene.  相似文献   

20.
Li MS  Je YH  Lee IH  Chang JH  Roh JY  Kim HS  Oh HW  Boo KS 《Current microbiology》2002,45(4):299-302
A strain of Bacillus thuringiensis that showed significantly high toxicity to Plutella xylostella and Spodoptera exigua was isolated from a Korean soil sample and characterized. The isolate, named B. thuringiensis K1, was determined to belong to ssp. kurstaki (H3a3b3c) type by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid pattern of K1 was different from that of the reference strain, ssp. kurstaki HD-1, but the parasporal inclusion protein profile of K1 had two major bands that were similar in size to those of ssp. kurstaki HD-1. To verify the δ-endotoxin gene types of K1, PCR analysis with specific cry gene primers was performed to show that K1 contained a new cry gene in addition to cry1Aa, cry1Ab, cry1Ac, cry1E and cry2 genes. PCR-amplified region of the new cry gene, cryX, showed 79% similarity to cry1Fa1 gene (GenBank Accession No. M63897). In an insect toxicity assay, K1 had higher toxicity against Plutella xylostella and S. exigua than ssp. kurstaki HD-1. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号