首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Li MS  Je YH  Lee IH  Chang JH  Roh JY  Kim HS  Oh HW  Boo KS 《Current microbiology》2002,45(4):299-302
A strain of Bacillus thuringiensis that showed significantly high toxicity to Plutella xylostella and Spodoptera exigua was isolated from a Korean soil sample and characterized. The isolate, named B. thuringiensis K1, was determined to belong to ssp. kurstaki (H3a3b3c) type by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid pattern of K1 was different from that of the reference strain, ssp. kurstaki HD-1, but the parasporal inclusion protein profile of K1 had two major bands that were similar in size to those of ssp. kurstaki HD-1. To verify the δ-endotoxin gene types of K1, PCR analysis with specific cry gene primers was performed to show that K1 contained a new cry gene in addition to cry1Aa, cry1Ab, cry1Ac, cry1E and cry2 genes. PCR-amplified region of the new cry gene, cryX, showed 79% similarity to cry1Fa1 gene (GenBank Accession No. M63897). In an insect toxicity assay, K1 had higher toxicity against Plutella xylostella and S. exigua than ssp. kurstaki HD-1. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

2.
Chang  Roh  Je  Park  Jin  Woo  & Kang 《Letters in applied microbiology》1998,26(5):387-390
A strain of Bacillus thuringiensis, STB-1, toxic against Spodoptera exigua , was isolated. Bacillus thuringiensis STB-1 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis ssp. kurstaki . The plasmid and protein profiles of B. thuringiensis STB-1 were compared with those of its reference strains, ssp. kurstaki and ssp. kenyae . To verifiy the gene type of B. thuringiensis STB-1, PCR analysis was performedwith Spodoptera -specific cry gene primers. The result showed that B. thuringiensis STB-1, unlike its reference strains, had cry1Aa , cry1Ab , cry1Ac and cry1E , suggesting that B. thuringiensis STB-1 was a unique strain with respect to gene type. In addition, B. thuringiensis STB-1 showed a high level of toxicity against both S. exigua and Bombyx mori , whereas B. thuringiensis ssp. kurstaki HD-1 or ssp. kenyae showed a high level of toxicity against only Bombyx mori or S. exigua , respectively.  相似文献   

3.
A UV-resistant mutant (Bt-m) of Bacillus thuringiensis subsp. kurstaki, producing a dark brown pigment, identified as melanin, was studied. Bt-m had higher larvicidity against Heliothis armigera than its parent. Survival of Bt-m spores and their insecticidal activity to irradiation at 254 nm and 366 nm were higher than those of the parent. The only toxic polypeptide produced by Bt-m was Cry1Ac (130 kDa); it lost cry1Aa, cry2Aa, and cry2Ab. Received: 2 April 2001 / Accepted: 14 May 2001  相似文献   

4.
The influence of Bacillus thuringiensis subsp. kurstaki HD-1 spores upon the toxicity of purified Cry1Ab and Cry1C crystal proteins toward susceptible and BT-resistant Indianmeal moth (IMM, Plodia interpunctella) larvae was investigated. With susceptible larvae, HD-1 spores were toxic in the absence of crystal protein and highly synergistic (approximately 35- to 50-fold) with either Cry1Ab or Cry1C protein. With BT-resistant IMM larvae, HD-1 spores were synergistic with Cry1Ab and Cry1C protein in all three resistant strains examined. Synergism was highest (approximately 25- to 44-fold) in insects with primary resistance toward Cry1C (IMM larvae with resistance to B. thuringiensis subsp. aizawai or entomocidus). However, HD-1 spores also synergized either Cry1Ab or Cry1C toxicity toward larvae resistant to B. thuringiensis subsp. kurstaki at a lower level (approximately five- to sixfold). With susceptible larvae, the presence of spores reduced the time of death when combined with each of the purified Cry proteins. Without spores, the speed of intoxication and eventual death for larvae treated with Cry1C and Cry1Ab proteins was much slower than for the HD-1 preparation containing both spores and crystals together. Neither spores nor toxin dose affected the mean time of death of resistant larvae treated with either Cry1Ab or Cry1C toxins. Both Cry1Ab and Cry1C toxins appeared to reduce feeding and consequently toxin consumption. Received: 1 December 1995 / Accepted: 3 January 1996  相似文献   

5.
Bacillus thuringiensis strains that belong to B. thuringiensis, B. kurstaki and soil-isolated B.t. were assessed in the following phytopathogenic: Rhizoctonia solani, that had their mycelial growth decreased after incubation in the presence of the bacterial strains. The bacteria have also pathogenic effect against the insect pest Spodoptera littoralis. The isolate B.t. D-1 and the B.t. kurstaki HD-203 were found to be inhibiting R. solani, the strain B. kurstaki HD-203 displayed the highest percentage of inhibition (64%) and B.t. D-1 showed 49% of inhibition. Antagonistic activity was maintained up to pH 8.5, and the antifungal activity was stable to heat at 70?°C for 1?h. Minimal inhibitory concentrations were 152 and 131?μl/ ml for B.t. D-1 and B. kurstaki HD-203, respectively. The two strains also have high efficacy against S. littoralis larvae, B.t. D-1 gave 70% and the B. kurstaki HD-203 strain gave 80% mortality after seven days of treatment.  相似文献   

6.
The crystal morphology and the profiles of genes encoding protein toxins (Cry and Cyt) were analyzed in 12 Bacillus thuringiensis strains isolated during epizootics in laboratory culture lines of Cydia pomonella, 2 isolates cultured from Leucoma salicis larvae, and 9 reference strains. Epizootic isolates produced crystals of the same bipyramidal shape; however, they revealed a variety of number and type of cry genes. Genes cry1I, cry2Ab, and cry9B were the most frequently observed in epizootic strains. Gene cry1I was noted in of 50% epizootic isolates. Eighty-three percent of them harbored gene cry2Ab. Gene cry9B was found for 42% of strains isolated during epizootics. Three isolates showed the largest number of cry genes and their variety; hence, they were chosen for the toxicity assay of their crystals and spores on C. pomonella larvae. One of them had approximately sixfold higher insecticidal activity than the reference strain B. thuringiensis subsp. kurstaki BTK STANDARD.  相似文献   

7.
《Journal of Asia》2007,10(2):137-143
The E. coli-B. thuringiensis shuttle vector for expression of cry1Ac, pHT1K-1Ac plasmid was introduced into acrystalliferous B. thuringiensis CryB and Spodoptera toxic STB-3 strain. The presence of a recombinant plasmid in transformants after electroporation was confirmed by PCR. The 1K-1Ac/CryB(CryB transformant) and 1K-1Ac/STB-3 (STB-3 transformant) produced bipyramidal-shaped parasporal inclusion that was 130 kDa in size as like B. thuringiensis subsp. kurstaki HD-73. In P. xylostella bioassay, these transformants showed significantly high toxicity than the wild-type recipients and further, in case of B. thuringiensis STB-3 transformant still had original Spodoptera toxicity. These results suggested that the pHT1K could be successfully applied for generating individual B. thuringiensis strains that produce various combinations of insecticidal proteins to expand their host spectrum and enhance insecticidal activity.  相似文献   

8.
By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strain's parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.  相似文献   

9.
The 5′ untranslated region and the orf1 sequence from the cry2Aa1 operon from Bacillus thuringiensis subsp. kurstaki NRD-12 were sequenced and compared to that from strain HD-1. The start codon described in HD-1 does not yield in NRD-12 a protein of the expected size of 20 kDa, but a 10-amino acid peptide. A second, highly conserved start codon is located 25 bp downstream from the first one and corresponds to an open reading frame of the same size in all known orf1-related sequences. Expression of lacZ gene fusions created at the level of the first ATG, second ATG, and stop codon of the NRD-12 orf1 sequence showed that orf1 is translated from the second ATG. The expected protein is 19 kDa in size. The expression starts at t2, which is in agreement with the presence of a BtI promoter in the cry2Aa1 operon. Received: 8 January 1999 / Accepted: 9 February 1999  相似文献   

10.
A triple recombineering technique was used with plasmid pHT315 to produce pHTEC, a construct carrying chitinase and cry2Aa genes from Bacillus thuringiensis subsp. kurstaki 4.0718. Transformation of wild-type B. thuringiensis strain HD73 and the acrystalliferous strain Cry-B with pHTEC resulted in the recovery of recombinant strains that expressed Cry2Aa as cubic crystals in the cell pellet and soluble chitinase protein. The toxicity of HD73 (pHTEC) against Helicoverpa armigera larvae increased sevenfold when compared with HD73 (pHT315) harboring pHT315 vector. The triple recombineering protocol was optimized by comparing recombination efficacy mediated by RecE/RecT and Redα/Redβ and by using single-strand DNA as substrate.  相似文献   

11.
We have developed a strategy for isolating cry genes from Bacillus thuringiensis. The key steps are the construction of a DNA library in an acrystalliferous B. thuringiensis host strain and screening for the formation of crystal through optical microscopy observation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. By this method, three cry genes—cry55Aa1, cry6Aa2, and cry5Ba2—were cloned from rice-shaped crystals, producing B. thuringiensis YBT-1518, which consists of 54- and 45-kDa crystal proteins. cry55Aa1 encoded a 45-kDa protein, cry6Aa2 encoded a 54-kDa protein, and cry5Ba2 remained cryptic in strain YBT-1518, as shown by SDS-PAGE or microscopic observation. Proteins encoded by these three genes are all toxic to the root knot nematode Meloidogyne hapla. The two genes cry55Aa1 and cry6Aa2 were found to be located on a plasmid with a rather small size of 17.7 kb, designated pBMB0228.  相似文献   

12.
Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l?1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.  相似文献   

13.
The cry gene content of Bacillus thuringiensis subsp. aizawai HD-133 was analyzed by a combination of high-pressure liquid chromatography (HPLC) and exclusive PCR. A total of six cry genes were detected in genomic DNA purified from HD-133, four from the cry1 family (cry1Aa, cry1Ab, cry1C, and cry1D) as well as a gene each from the cry2 (cry2B) and the cry1I families. To directly determine which genes were expressed and crystallized in the purified parasporal inclusions, solubilized and trypsinized HD-133 crystals were subjected to chromatographic separation by HPLC. Only three proteins, Cry1Ab, Cry1C, and Cry1D, were found, in a 60/37/3 ratio. Dot blot analysis of total mRNA purified from HD-133 showed that both the cry2B and cry1I genes, but not the cry1Aa gene, were transcribed. Cloning and sequencing of the cry1Aa gene revealed an inserted DNA sequence within the cry coding sequence, resulting in a disrupted reading frame. Taken together, our results show that combining crystal protein analysis with a genetic approach is a highly complementary and powerful way to assess the potential of B. thuringiensis isolates for new insecticidal genes and specificities. Furthermore, based on the number of cryptic genes found in HD-133, the total cry gene content of B. thuringiensis strains may be higher than previously thought.  相似文献   

14.
A new cry1Ab-type gene encoding the 130 kDa protein of Bacillus thuringiensis NT0423 bipyramidal crystals was cloned, sequenced, and expressed in a crystal-negative B. thuringiensis host. Hybridization experiments revealed that the crystal protein gene is located on a 44 MDa plasmid of B. thuringiensis NT0423. A strong positive signal detected on the 6.6 kb HindIII fragment from B. thuringiensis NT0423 plasmid DNA was cloned and sequenced. The cry1Ab-type gene, designated cry1Af1, consisted of open reading frame of 3453 bp, encoding a protein of 1151 amino acid residues. The polypeptide has the deduced amino acid sequences predicting molecular masses of 130,215 Da. With both Bt I and Br II promoter sequences were found, the B. thuringiensis NT0423 crystal protein gene promoter closely aligned with those of cry1A-type crystal protein gene. When compared with known sequences of other Cry and Cyt proteins, the Cry1Af1 protein showed maximum 93% sequence identity to Cry1Ab protein of B. thuringiensis subsp. kurstaki. The expressed Cry1Af1 protein in a crystal-negative B. thuringiensis host appears to have strong insecticidal activity against lepidopteran larvae (Plutella xylostella). Crystals containing Cry1Af1 were about six times more toxic than the wild-type crystals of B. thuringiensis NT0423. Received: 20 February 2001 / Accepted: 17 April 2001  相似文献   

15.
Brazilian strains of Bacillus thuringiensis, namely S701, S764 and S1265 were analysed regarding their cry gene and protein contents, crystal type, and activity against larvae of the lepidopteran fall armyworm (Spodoptera frugiperda Smith), the velvet caterpillar (Anticarsia gemmatalis), the dipterans (Culex quinquefasciatus and Aedes aegypti) and the coleopteran (Tenebrio molitor). The LC50 of the strains against second instar larvae of S. frugiperda or A. gemmatalis revealed a high potency against those insect species. The spore–crystal mixtures of the isolates were analysed by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and showed similar protein pattern as the B. thuringiensis subsp. kurstaki strain HD‐1 (proteins approximately 130 and 65 kDa) for isolates S701 and S764, respectively, and only one major protein of approximately 130 kDa for isolate S1265. The polymerase chain reaction (PCR) using total DNA of the isolates and general and specific primers showed the presence of cry1Aa, cry1Ac, cry1Ia and cry2Ab genes in the two isolates serotyped as B. thuringiensis kurstaki (S701 and S764) and the presence of cry1D and cry2Ad in B. thuringiensis morrisoni S1265 strain. Scanning electron microscopy of strains S701 and S764, showed the presence of bipyramidal, cuboidal and round crystals, like in strain HD‐1 and bipyramidal and round crystals like in strain S1265.  相似文献   

16.
Assessment of protoxin composition in Bacillus thuringiensis parasporal crystals is principally hampered by the fact that protoxins in a single strain usually possess high sequence homology. Therefore, new strategies towards the identification of protoxins have been developed. Here, we established a powerful method through embedding solubilized protoxins in a polyacrylamide gel block coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of in-gel-generated peptides for protoxin identification. Our model study revealed that four protoxins (Cry1Aa, Cry1Ab, Cry1Ac and Cry2Aa) and six protoxins (Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa, and Cyt2Ba) could be rapidly identified from B. thuringiensis subsp. kurstaki HD1 and subsp. israelensis 4Q2-72, respectively. The experimental results indicated that our method is a straightforward tool for analyzing protoxin expression profile in B. thuringiensis strains. Given its technical simplicity and sensitivity, our method might facilitate the present screening program for B. thuringiensis strains with new insecticidal properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zujiao Fu and Yunjun Sun contributed equally to this work.  相似文献   

17.
A series of natural crystal proteins from B. thuringiensis subsp. Alesti 12–25, caucasicus, galleriae 11–67, galleriae 6–96, kenyae, and shondungensis and spore‐crystal preparations from finitimus 11–66 and from a recombinant strain of B. thuringiensis subsp. kurstaki expressing Cry 1 Ga1 only, were assessed as a toxic agent for the pine processionary caterpillar, Thaumetopoea pityocampa. Some preparations had a thoroughly investigated composition and contained Cry1Aa, Cry1Ab2, Cry1Ab7, Cry1D, Cry1F, Cry 1 Ga1, Cry9Aa, Cry26 crystal proteins, whereas crystals of B. thuringiensis subsp. caucasicus, kenyae, and shondungensis harboured predominantly unidentified toxins distant from commonly used prototypes. Bioassays were based on the simultaneous assignment of each treatment to groups of 20 full sibling first‐instar larvae, obtained from broods of a population from North‐western Italy. The toxin was applied to pine needles by the leaf dipping method and the effect was registered in both feeding inhibition and mortality. B. thuringiensis subsp. caucasicus, kenyae, galleriae 6–96, alesti, and galleriae 11–67 gave the best results in terms of both feeding inhibition and larval mortality. Broods tested in B. thuringiensis bioassays showed a substantial variation in susceptibility to the toxins, suggesting the potential development of resistance in the population.  相似文献   

18.
Abstract

As a part of an ongoing nationwide programme focused on finding novel strains of Bacillus thuringiensis (Bt) that are toxic to some of the major pests that impact economically important crops, we initiated a search for Bt isolates native to Syria. We succeeded in assembling a collection of 40 Bt isolates recovered from infected larvae of Galleria mellonella, Helicoverpa armigera and Ephestia kuehniella. Light microscopy showed that all isolates produce bipyramidal and cuboidal crystal proteins. The 50% lethal concentration of the spore-crystal mixture of the 40 isolates against E. kuehniella larvae varied from 3 to more than 200 µg g?1. A comparison of the LC50 values of the tested isolates with the reference strain Bt kurstaki HD-1 (20.55 µg g?1), showed that some of these isolates have a similar or up to six times higher toxicity potential. PCR screening revealed that all obtained isolates contain cry1 and cry2 genes, whereas only four contain cry9. Moreover, the proteins of 130 and 65/70 Kda encoded by these genes were detected in the SDS-PAGE of the purified parasporal bodies. Flagellar serotyping classified 30 as serovar kurstaki, six isolates serovar aizawai, one isolate cross-reacted with more than one H3 antisera and three were not typeable. Assays of toxicity of the aizawai isolates against third instar of G. mellonella showed that four, which contain cry9, have almost similar toxicity to the commercial strain Bt aizawai B401. Therefore, these isolates could be adopted for future applications to control G. mellonella. Moreover, this study contributes to our knowledge of Bt diversity in Syria where to date very few collections have been described.  相似文献   

19.
The cry2Aa and cry2Ab genes from a Brazilian Bacillus thuringiensis strain were introduced into the genome of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in order to evaluate the heterologous proteins expression in insect cells and their toxicity to different insects. The recombinant viruses (vAcCry2Aa and vSynCry2Ab) were amplified in Trichoplusia ni (BTI-Tn5B1-4) cells and used to infect Spodoptera frugiperda larvae. Total extracts from S. frugiperda infected with the recombinant viruses were analysed by SDS-PAGE, which detected the presence of polypeptides around 65 kDa. Cuboid-shaped protein crystals were observed in insect extracts by light and scanning electron microscopy. Bioassays, using the heterologous proteins showed toxicity against second instar A. gemmatalis larvae (Cry2Aa) with a LC50 of 1.03 μg/ml and second instar S. frugiperda larvae (Cry2Ab) with a LC50 of 3.45 μg/ml. No toxic activity was detected for Aedes aegypti and Culex quinquenfaciatus.  相似文献   

20.
Gram-positive, endospore-forming Bacillus thuringiensis-like strains were isolated from 95 of 413 samples collected at the 0–5 cm depth of noncultivated soils and stagnant or dried-up ponds as well as from dust from stored grain products in South Central United States. Based on the production of parasporal crystals, 25 isolates were identified as B. thuringiensis after examining 227 B. thuringiensis-like colonies. The greatest proportion of samples yielding B. thuringiensis were from the dust from grain storage. The sodium acetate selective medium, heat processing, and crystal staining used in the initial screening revealed diverse populations of B. thuringiensis, which were categorized into distinct crystal morphological groups. Sugar fermentation, antibiotic sensitivity, growth characteristics and PCR studies showed diversity among the isolates that were distributed among 25 of the 58 known strains. The most frequently isolated strains were kurstaki, aizawai, morrisoni, thuringiensis, sotto and kenyae that together represented more than 90% of the characterized isolates. PCR analysis using 30 family primer pairs for cry and cyt genes showed that the frequency of the cry1 gene (62%) was predominant followed by the cry2 genes (30%), and the rest (8%) were other cry gene types, such as cry3, cry4, cry10, cry11, cry14, cry15, cry20, cry24 and cry26. Both cyt1 and -2 genes were also detected. Several isolates showed PCR products on the gel that were not consistent with the expected sizes of nucleotides targeted by the primers. These were suggestive of nonspecific amplifications and were not used in the characterization process. Journal of Industrial Microbiology & Biotechnology (2002) 28, 284–290 DOI: 10.1038/sj/jim/7000244 Received 30 May 2001/ Accepted in revised form 10 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号