首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperfine-shifted 1H NMR resonances of oxidized and reduced Trichomonas vaginalis ferredoxin, a functionally unique [2Fe-2S] ferredoxin, have been studied. The oxidized protein spectrum displayed a pattern of six broad upfield-shifted resonances between 13 and 40 ppm with chemical shifts distinct from those of other [2Fe-2S] ferredoxins. All hyperfine 1H resonances of the oxidized ferredoxin displayed anti-Curie temperature dependences. Reduced T. vaginalis ferredoxin displayed hyperfine resonances both upfield and downfield of the diamagnetic region. These resonances showed Curie temperature dependences. Overall the hyperfine-shifted NMR spectrum of T. vaginalis ferredoxin, along with other spectroscopic properties, suggested different structural properties for the active center of oxidized hydrogenosomal ferredoxins from those of other [2Fe-2S] ferredoxins.  相似文献   

2.
Pseudomonas putida and Azotobacter vinelandii ferredoxins each contain one [4Fe-4S] cluster and one [3Fe-4S] cluster. Their polypeptide chains are nearly identical, differing by only 15 residues out of a total of 106. T1 measurements and temperature dependence studies of the 1H NMR spectrum of each ferredoxin demonstrate that all six resolved downfield resonances are near an iron-sulfur center. The five most downfield resonances are shown to arise from protons on cysteinyl beta-carbons by incorporation of cysteine deuterated at the beta-carbon into cell protein. The sixth peak (10.5 ppm) is shown to be a non-cysteinyl proton. This peak resolves into two resonances of approximately equal intensity at temperatures below 15 degrees or above 25 degrees C. A nuclear Overhauser effect observed between the two downfield-most resonances of A. vinelandii ferredoxin indicates that they originate from a geminal pair of beta-cysteinyl protons. An Overhauser effect observed between the resonances at 22.3 and 15.7 ppm, in conjunction with other results, implies that the resonance at 22.3 ppm arises from a beta-proton on the 3Fe-center-bound Cys16, while the resonance at 15.7 ppm arises from Cys45 beta-proton, which is bound to the 4Fe center. The five most downfield resonances are pH-dependent. The sixth peak (10.5 ppm in P. putida ferredoxin) is pH-independent. Possible origins for the observed pH dependencies are discussed.  相似文献   

3.
An N-terminal domain of Clostridium pasteurianum hydrogenase I, encompassing 76 residues out of the 574 composing the full-size enzyme, had previously been overproduced in Escherichia coli and shown to form a stable fold around a [2Fe-2S] cluster. This domain displays only marginal sequence similarity with [2Fe-2S] proteins of known structure, and therefore, two-dimensional 1H NMR has been implemented to elucidate features of the polypeptide fold. Despite the perturbing presence of the paramagnetic [2Fe-2S] cluster, 57 spin systems were detected in the TOCSY spectra, 52 of which were sequentially assigned through NOE connectivities. Several secondary structure elements were identified. The N terminus of the protein consists of two antiparallel beta strands followed by an alpha helix contacting both strands. Two additional antiparallel beta strands, one of them at the C terminus of the sequence, form a four-stranded beta sheet together with the two N-terminal strands. The proton resonances that can be attributed to this beta2alphabeta2 structural motif undergo no paramagnetic perturbations, suggesting that it is distant from the [2Fe-2S] cluster. In plant- and mammalian-type ferredoxins, a very similar structural pattern is found in the part of the protein farthest from the [2Fe-2S] cluster. This indicates that the N-terminal domain of C. pasteurianum hydrogenase folds in a manner very similar to those of plant- and mammalian-type ferredoxins over a significant part (ca. 50%) of its structure. Even in the vicinity of the metal site, where 1H NMR data are blurred by paramagnetic interactions, the N-terminal domains of hydrogenase and mammalian- and plant-type ferredoxins most likely display significant structural similarity, as inferred from local sequence alignments and from previously reported circular dichroism and resonance Raman spectra. These data afford structural information on a kind of [2Fe-2S] cluster-containing domain that occurs in a number of redox enzymes and complexes. In addition, together with previously published sequence alignments, they highlight the widespread distribution of the plant-type ferredoxin fold in bioenergetic systems encompassing anaerobic metabolism, photosynthesis, and aerobic respiratory chains.  相似文献   

4.
A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification.  相似文献   

5.
A two-dimensional NMR study has been carried out on the four-iron clusters of a bacterial oxidized ferredoxin for the purpose of investigating the relationship between contact shift patterns and the orientation of the individual coordinated cysteines. The ferredoxin from Clostridium pasteurianum, CpFdox, was selected because of its extensive sequence homology, and likely close structural similarity, to the crystallographically characterized ferredoxin from Peptococcus aerogenes, Pa Fdox (Adman, E.T., Sieker, L.C., and Jensen, L. H. (1973) J. Biol. Chem. 248, 3987-3996). Rapid data collection rates with minimal but adequate acquisition time allowed the detection of numerous CpFdox cross-peaks from the contact-shifted and strongly relaxed coordinated cysteinyl C beta H protons in the resolved 10-20 ppm window. Relatively strong magnitude COSY cross peaks from the resolved eight cysteinyl C beta H resonance unambiguously locate the geminal C beta H partner for each residue; weaker cross-peaks locate the C alpha Hs from three of the residues. The geminal nature of the magnitude-COSY detected partners to the resolved C beta H peaks is confirmed by strong NOESY cross-peaks. The NOESY spectra, moreover, assign an additional two cysteinyl C alpha H resonances. The present results confirm some previous one-dimensional NOE assignments, revise others, and locate resonances previously undetected (Bertini, I., Briganti, F., Luchinat, C., and Scozzafara, A. (1990) Inorg. Chem. 29, 1874-1880). A striking pairwise pseudo-symmetry in cysteinyl contact shift patterns is observed which is attributed to the previously recognized pseudo-symmetry in the crystal of PaFdox. A detailed analysis of the structural/electronic determinants of the coordinated cysteine C beta H contact shift pattern is made, and the NMR data necessary for unique interpretation are identified. It is shown that analysis of the relaxation properties of cysteine beta-methylene protons provides the stereospecific assignments necessary for comparison of shift ratios with crystallographic structural data. The available structural data on PaFdox (Backes, G., Mino, Y., Loehr, T., Meyer, T., Cusanovich, M., Sweeney, W., Adman, E., and Sanders-Loehr, J. (1991) J. Am. Chem. Soc. 13, 2055-2064) are qualitatively but not quantitatively consistent with the observed cysteinyl contact shift pattern, with the NMR data reflecting more asymmetry than previous studies. A tentative assignment of a single pair of symmetry-related cysteines is proposed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

7.
The ferredoxin was purified from the green alga, Chlamydomonas reinhardtii. The protein showed typical absorption and circular dichroism spectra of a [2Fe-2S] ferredoxin. When compared with spinach ferredoxin, the C. reinhardtii protein was less effective in the catalysis of NADP+ photoreduction, but its activity was higher in the light activation of C. reinhardtii malate dehydrogenase (NADP). The complete amino acid sequence was determined by automated Edman degradation of the whole protein and of peptides obtained by trypsin and chymotrypsin digestions and by CNBr cleavage. The protein consists of 94 residues, with Tyr at both NH2 and COOH termini. The positions of the four cysteines binding the two iron atoms are similar to those found in other [2Fe-2S] ferredoxins. The primary structure of C. reinhardtii ferredoxin showed a great homology (about 80%) with ferredoxins from two other green algae.  相似文献   

8.
J Meyer  J Gaillard  J M Moulis 《Biochemistry》1988,27(16):6150-6156
Proton NMR spectra (250 MHz) of the nitrogenase iron protein from Clostridium pasteurianum (Cp2) were found to display 9 or 10 paramagnetically shifted resonances in the 15-50 ppm range. The most shifted resonances belonged to two approximately equal subsets having temperature dependences of opposite sign. The latter occurrence is consistent with the interaction of the corresponding protons with an antiferromagnetically coupled metal center. The number of proton resonances of Cp2, their positions, and their temperature dependences were similar to those observed in spectra of (4Fe-4S)+ ferredoxins, particularly those of the latter that contain a single tetranuclear cluster, such as the ferredoxin from Bacillus stearothermophilus. The effects of several adenine nucleotides on the paramagnetically shifted proton resonances of Cp2 have been investigated. Whereas MgAMP had no effect at all, MgADP and MgATP were found to induce different modifications, which in both cases involved approximately half only of the shifted proton resonances. These data suggest that nucleotide binding affects mainly one part of the iron-sulfur cluster. A remarkable feature of the spectra of Cp2 in the presence of MgATP is the grouping of the shifted proton resonances in sets of two or four having identical chemical shifts and temperature dependences. A nearly perfect 2-fold symmetry is thus suggested for the arrangement of the cysteine protons around the active site. These observations lend support to the proposal that the (4Fe-4S) cluster is held symmetrically between the two identical subunits and are consistent with the existence of two MgATP binding sites on nitrogenase iron proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The 8Fe-8S ferredoxin from Clostridium pasteurianum was investigated by 1D and 2D 1H NMR. Spectra of a well-structured, full native preparation of the oxidized protein in 1 M NaCl at pH 8.0 are presented. Assignments of non-isotropically shifted resonances in the diamagnetic region of the spectrum, namely those of the unique aromatic residues F30 and Y2, are presented for the first time.  相似文献   

10.
The ferredoxin from Clostridium pasteurianum, which contains two [4Fe-4S] clusters, was investigated in its oxidized and reduced states by two-dimensional (2D) (1)H-(1)H nuclear Overhauser enhancement spectroscopy (NOESY). Comparison of the data from the oxidized ferredoxin with those published previously revealed the same NOE connectivities. No previous (1)H-(1)H NOESY study of the fully reduced ferredoxin has previously been published. However, it was possible to compare our results with those of a 2D exchange spectroscopy investigation of half-reduced C. pasteurianum ferredoxin. The present results with reduced C. pasteurianum ferredoxin confirm many of the (1)H peaks and NOE interactions reported earlier, revise others, and locate resonances previously undetected. When the ferredoxin was slightly exposed to oxygen, several of the hyperfine shifted resonances were irreversibly influenced. A resonance at 34 ppm in the (1)H NMR spectra of both redox states is indicative of oxygen exposure. These results indicate the importance of keeping the ferredoxin strictly anaerobic during purification and solvent exchange.  相似文献   

11.
The 1H resonances of the high-potential [4Fe-4S]2+ ferredoxin from Chromatium vinosum have been assigned through conventional sequential methodology applied to 2D NMR spectra. Almost 80% of the residues were identified using standard 2D COSY, HOHAHA, and NOESY pulse sequences. These residues correspond to four segments of the primary structure that do not interact strongly with the iron-sulfur cluster. A minor correction to the amino acid sequence is strongly suggested by these NMR data. Additional protons more sensitive to the proximity of the cluster were assigned by a combination of NOESY experiments with fast repetition rates and short mixing times and of HOHAHA spectra recorded with reduced spin-lock duration aimed at compensating for the short relaxation rates. Hence, the contributions of 79 residues out of 85 were identified in NMR spectra, among which the assignments of 64 residues were completed. Even the fastest relaxing protons, like those of the cysteine ligands, could be correlated, partly because the strong hyperfine shifts isolate them from the crowded diamagnetic region. However, other protons, in particular those involved in NH-S hydrogen bonds with the iron-sulfur cluster, were more difficult to identify, most probably because their relatively broad signals overlapped with those of protons not or less perturbed by the active site. The availability of the major part of the 1H NMR assignments has enabled the detection and identification of many interresidue NOESY cross peaks. These data are in full agreement with the elements of secondary structure previously revealed by X-ray crystallographic analysis of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

13.
Ferredoxins are proteins which contain iron and inorganic sulfide and are capable of electron transport. They are found in a wide range of organisms, from anaerobic bacteria, to plants and mammals. Although NMR spectroscopy has been used to study ferredoxins since the 1970s, little important structural or biochemical information has resulted from these investigations. The major difficulty has been the effect of the paramagnetic iron-sulfur clusters on the peptide resonances, hindering nuclear Overhauser effect (NOE) studies and causing broad line widths. These effects are most pronounced on resonances arising from the nuclei closest to the iron-sulfur center. Unfortunately, these are likely to be the most interesting nuclei, as they report the events and geometry in the vicinity of the active sites. In this paper, the first direct assignment of beta-cysteinyl 13C resonances for any iron-sulfur protein is reported for the spectrum of Pseudomonas putida ferredoxin. These resonances are of special significance, as they arise from the atoms on the protein closest to the iron centers, with the exception of the directly bound cysteinyl sulfur atoms. In addition, cysteinyl and ring system 1H NMR resonance assignments are made for the spectra of P. putida ferredoxin and Azotobacter vinelandii ferredoxin I.  相似文献   

14.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

15.
The structure of a low-potential ferredoxin isolated from Bacillus thermoproteolyticus has been refined by a restrained least-squares method. The final crystallographic R factor is 0.204 for 2906 reflections with F greater than 3 sigma F in the 6.0 to 2.3 A resolution range. The model contains 81 amino acid residues, one [4Fe-4S] cluster, and 59 water molecules. The root-mean-square deviation from ideal values for bond lengths is 0.018 A, and the mean coordinate error is estimated to be 0.25 A. The present ferredoxin is similar in the topology of the polypeptide backbone to the dicluster-type ferredoxins from Peptococcus aerogenes and Azotobacter vinelandii, but has considerable insertions and deletions of the peptide segments as well as different secondary structures. Although all but the C-terminal C zeta atoms of P. aerogenes ferredoxin superpose on the C alpha atoms of A. vinelandii ferredoxin, only 60% superpose on the C alpha atoms of B. thermoproteolyticus ferredoxin, with a root-mean-square distance of 0.82 A for each pair. The conformations of the peptide segments surrounding the [4Fe-4S] clusters in these three ferredoxins are all conserved. Moreover, the schemes for the NH...S hydrogen bonds in these ferredoxins are nearly identical. The site of the aromatic ring of Tyr27 in B. thermoproteolyticus ferredoxin is close spatially to that of Tyr28 in P. aerogenes ferredoxin with reference to the cluster, but these residues do not correspond in the spatial alignment of their polypeptide backbones. We infer that in monocluster-type ferredoxins, the side-chain at the 27th residue has a crucial effect on the stability of the cluster. Of the four cysteine residues that bind to the second Fe-S cluster in the dicluster-type ferredoxins, two are conserved in the monocluster-type ferredoxins from Desulfovibrio gigas. D. desulfuricans Norway, and Clostridium thermoaceticum. The tertiary structure of B. thermoproteolyticus ferredoxin suggests that in such monocluster-type ferredoxins these two cysteine residues, which in it correspond to Ala21 and Asp53, form a disulfide bridge.  相似文献   

16.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

17.
Haloferax mediterranei is a halophilic archaeon that can grow in aerobic conditions with nitrate as sole nitrogen source. The electron donor in the aerobic nitrate reduction to ammonium was a ferredoxin. This ferredoxin has been purified and characterised. Air-oxidized H. mediterranei ferredoxin has a UV-visible absorption spectra typical of 2Fe-type ferredoxins with an A420/A280 of 0.21. The nuclear magnetic resonance (NMR) spectra of the ferredoxin showed similarity to those of ferredoxins from plant and bacteria, containing a [2Fe-2S] cluster. The physiological function of ferredoxin might be to serve as an electron donor for nitrate reduction to ammonium by assimilatory nitrate (EC 1.6.6.2) and nitrite reductases (EC 1.7.7.1). The apparent molecular weight (Mr) of the ferredoxin was estimated to be 21 kDa on SDS-polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

18.
19.
Dicluster ferredoxins (Fds) from Sulfolobus acidocaldarius and Desulfovibrio africanus (FdIII) have been studied using 1H NMR. Both wild-type proteins contain a [3Fe-4S]+/0 and a [4Fe-4S]2+/+ cluster as isolated. The [4Fe-4S]2+/+ cluster (cluster II) is bound by cysteine residues arranged in a classic ferredoxin motif: CysI-(Xaa)2-CysII-(Xaa)2-CysIII-(Xaa)n-CysIV-Pro , whilst the binding motif of the [3Fe-4S]+/0 cluster (cluster I) has a non-ligating aspartic acid (Asp14) at position II, i.e. CysI-(Xaa)2-Asp-(Xaa)2-CysIII. D. africanus FdIII undergoes facile cluster transformation from the 7Fe form to the 8Fe form, but S. acidocaldarius Fd does not. Many factors determine the propensity of a cluster to undergo interconversion, including the presence, and correct orientation, of a suitable ligand. We have investigated this using 1H NMR by introducing a potential fourth ligand into the binding motif of cluster I of D. africanus FdIII. Asp14 has been mutated to cysteine (D14C), glutamic acid (D14E) and histidine (D14H). Cluster incorporation was performed in vitro. The cluster types present were identified from the chemical shift patterns and temperature-dependent behaviour of the hyperfine-shifted resonances. Factors influencing cluster ligation and cluster interconversion, in vitro, are discussed. Furthermore, the data have established that the residue at position II in the cluster binding motif of cluster I is influential in determining the chemical shift pattern observed for a [3Fe-4S]+ cluster when a short/symmetric binding motif is present. Based on this, a series of rules for characterising the 1H NMR chemical shifts of mono- and di-cluster [3Fe-4S]+ cluster-containing ferredoxins is given.  相似文献   

20.
The electron paramagnetic resonance (EPR) spectra of the reduced selenium-substituted 2-[4Fe-4Se]+ ferredoxins from three bacteria of the Clostridium genus display low-field signals at g = 5.17, g = 10.11, and g = 12.76. The positions, shapes, and temperature dependencies of these signals have allowed their assignments to the three excited states of an S = 7/2 spin multiplet, the fundamental state of which is observed as unusual features in low-temperature (T less than or equal to 20 K) M?ssbauer spectra. The S = 7/2 spin state is present in 2[4Fe-4Se]+ clostridial ferredoxins together with the classical S = 1/2 state and with a S = 3/2 state, the fundamental doublet of which is observed as a broad signal in the g = 3-4 region. The relative intensities of the EPR signals corresponding to these spin states depend on the species of Clostridium that the ferredoxin is extracted from. In contrast with clostridial ferredoxins, the reduced selenium-substituted ferredoxin from Bacillus stearothermophilus, which differs significantly from the clostridial proteins by its primary structure and by its containing only one tetranuclear cluster, displays only the S = 1/2 state. Thus, the high-multiplicity spin states arise from a specific interaction between the clostridial ferredoxin polypeptide chain and the reduced [4Fe-4Se]+ clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号