首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to form biofilms in the airways of people suffering from cystic fibrosis is a critical element of Pseudomonas aeruginosa pathogenesis. The 15-gene psl operon encodes a putative polysaccharide that plays an important role in biofilm initiation in nonmucoid P. aeruginosa strains. Biofilm initiation by a P. aeruginosa PAO1 strain with disruption of pslA and pslB (DeltapslAB) was severely compromised, indicating that psl has a role in cell-surface interactions. In this study, we investigated the adherence properties of this DeltapslAB mutant using biotic surfaces (epithelial cells and mucin-coated surfaces) and abiotic surfaces. Our results showed that psl is required for attachment to a variety of surfaces, independent of the carbon source. To study the potential roles of Psl apart from attachment, we generated a psl-inducible P. aeruginosa strain (Deltapsl/p(BAD)-psl) by replacing the psl promoter region with araC-p(BAD), so that expression of psl could be controlled by addition of arabinose. Analysis of biofilms formed by the Deltapsl/p(BAD)-psl strain indicated that expression of the psl operon is required to maintain the biofilm structure at steps postattachment. Overproduction of the Psl polysaccharide led to enhanced cell-surface and intercellular adhesion of P. aeruginosa. This translated into significant changes in the architecture of the biofilm. We propose that Psl has an important role in P. aeruginosa adhesion, which is critical for initiation and maintenance of the biofilm structure.  相似文献   

2.
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P.aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.  相似文献   

3.
Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl(++)). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl(++) variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl(++) bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa.  相似文献   

4.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

5.
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.  相似文献   

6.
The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P.?aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P.?aeruginosa CF infection.  相似文献   

7.
Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of the Pseudomonas aeruginosa biofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation in P. aeruginosa strains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes, designated psl, are important for biofilm initiation. A PAO1 strain with a disruption of the first two genes of the psl cluster (PA2231 and PA2232) was severely compromised in biofilm initiation, as confirmed by static microtiter and continuous culture flow cell and tubing biofilm assays. This impaired biofilm phenotype could be complemented with the wild-type psl sequences and was not due to defects in motility or lipopolysaccharide biosynthesis. These results implicate an as yet unknown exopolysaccharide as being required for the formation of the biofilm matrix. Understanding psl-encoded exopolysaccharide expression and protection in biofilms will provide insight into the pathogenesis of P. aeruginosa in cystic fibrosis and other infections involving biofilms.  相似文献   

8.
9.
Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa.  相似文献   

10.
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.  相似文献   

11.
Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P.?aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances from biofilms formed by mucoid P.?aeruginosa were investigated. Alginate is not an essential structure component for mucoid P.?aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P.?aeruginosa biofilms. The Psl polysaccharide is more important than Pel polysaccharide in mucoid P.?aeruginosa biofilm structure maintenance and phagocytosis resistance. The polysaccharides were further found to protect mucoid P.?aeruginosa strain from host immune clearance in a mouse model of acute lung infection.  相似文献   

12.
The Pseudomonas aeruginosa polysaccharide synthesis locus (psl) is predicted to encode an exopolysaccharide which is critical for biofilm formation. Here we used chemical composition analyses and mannose- or galactose-specific lectin staining, followed by confocal laser scanning microscopy and electron microscopy, to show that Psl is a galactose-rich and mannose-rich exopolysaccharide.  相似文献   

13.
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.  相似文献   

14.
Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870.  相似文献   

15.
铜绿假单胞菌是常见的人类条件致病菌,其生物被膜的形成会增强菌体的耐药性。已有文献报道绿原酸可抑制铜绿假单胞菌生物被膜的形成,本研究在此基础上主要探究了其对全局性次级代谢调控系统Gac-Rsm表达的影响。结果显示,绿原酸可抑制铜绿假单胞菌生物被膜形成的能力,降低胞外总多糖合成量,但关键胞外多糖psl的合成酶基因pslA转录未受影响,还可增强Gac-Rsm系统中关键调控因子RsmA的表达水平,降低细胞内关键信使分子环二鸟苷酸(cyclic dimeric guanosine monophosphate,c-di-GMP)水平。结果表明,绿原酸可通过增强RsmA的表达来抑制铜绿假单胞菌生物被膜的形成。  相似文献   

16.
The interaction of Pseudomonas aeruginosa with surfaces has been described as a two-stage process requiring distinct signaling events and the reciprocal modulation of small RNAs (sRNAs). However, little is known regarding the relationship between sRNA-modulating pathways active under planktonic or surface-associated growth conditions. Here, we demonstrate that SagS (PA2824), the cognate sensor of HptB, links sRNA-modulating activities via the Gac/HptB/Rsm system postattachment to the signal transduction network BfiSR, previously demonstrated to be required for the development of P. aeruginosa. Consistent with the role of SagS in the GacA-dependent HtpB signaling pathway, inactivation of sagS resulted in hyperattachment, an HptB-dependent increase in rsmYZ, increased Psl polysaccharide production, and increased virulence. Moreover, sagS inactivation rescued attachment but abrogated biofilm formation by the ΔgacA and ΔhptB mutant strains. The ΔsagS strain was impaired in biofilm formation at a stage similar to that of the previously described two-component system BfiSR. Expression of bfiR but not bfiS restored ΔsagS biofilm formation independently of rsmYZ. We demonstrate that SagS interacts directly with BfiS and only indirectly with BfiR, with the direct and specific interaction between these two membrane-bound sensors resulting in the modulation of the phosphorylation state of BfiS in a growth-mode-dependent manner. SagS plays an important role in P. aeruginosa virulence in a manner opposite to that of BfiS. Our findings indicate that SagS acts as a switch by linking the GacA-dependent sensory system under planktonic conditions to the suppression of sRNAs postattachment and to BfiSR, required for the development of P. aeruginosa biofilms, in a sequential and stage-specific manner.  相似文献   

17.
18.
The function of pslD, which is part of the psl operon from Pseudomonas aeruginosa, was investigated in this study. The psl operon is involved in exopolysaccharide biosynthesis and biofilm formation. An isogenic marker-free pslD deletion mutant of P. aeruginosa PAO1 which was deficient in the formation of differentiated biofilms was generated. Expression of only the pslD gene coding region restored the wild-type phenotype. A C-terminal, hexahistidine tag fusion enabled the identification of PslD. LacZ and PhoA translational fusions with PslD indicated that PslD is a secreted protein required for biofilm formation, presumably via its role in exopolysaccharide export.  相似文献   

19.
20.
The symbiosis polysaccharide locus, syp, is required for Vibrio fischeri to form a symbiotic association with the squid Euprymna scolopes. It is also required for biofilm formation induced by the unlinked regulator RscS. The syp locus includes 18 genes that can be classified into four groups based on putative function: 4 genes encode putative regulators, 6 encode glycosyltransferases, 2 encode export proteins, and the remaining 6 encode proteins with other functions, including polysaccharide modification. To understand the roles of each of the 14 structural syp genes in colonization and biofilm formation, we generated nonpolar in-frame deletions of each gene. All of the deletion mutants exhibited defects in their ability to colonize juvenile squid, although the impact of the loss of SypB or SypI was modest. Consistent with their requirement for colonization, most of the structural genes were also required for RscS-induced biofilm formation. In particular, the production of wrinkled colonies, pellicles, and the matrix on the colony surface was eliminated or severely decreased in all mutants except for the sypB and sypI mutants; in contrast, only a subset of genes appeared to play a role in attachment to glass. Finally, immunoblotting data suggested that the structural Syp proteins are involved in polysaccharide production and/or export. These results provide important insights into the requirements for the syp genes under different environmental conditions and thus lay the groundwork for a more complete understanding of the matrix produced by V. fischeri to enhance cell-cell interactions and promote symbiotic colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号