首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The degree of single strandedness of the DNA released from rat liver nuclei by various alkaline lysing solutions (including some with sodium dodecyl sulfate) was determined both before and after sedimentation in alkaline sucrose gradients employing electron microscopy, melting profiles, circular dichroism measurements, and digestibility by S1 nuclease. Regardless of the technique employed, the results obtained following alkaline sucrose gradient centrifugation of the DNA are consistent. The DNA was completely single stranded as judged by electron microscopy, circular dichroism spectra, and digestibility by S1 nuclease, an enzyme that specifically hydrolyzes single-stranded DNA. This was not true if the DNA was analyzed following alkaline lysis of the nuclei but before centrifugation. Under conditions which gave a complete transition to the single-stranded state, as judged by melting profiles and circular dichroism spectra, only 10-15% of the DNA was hydrolyzed by S1 nuclease. An increase in the susceptibility of the released DNA to S1 nuclease was observed with increases in the pH of the lysing solution. In order to release DNA which was single stranded as judged by both physical and enzymological techniques, the rat liver nuclei were lysed for 30 min with a 0.3 M NaOH lysing solution containing 0.5% dodecyl sulfate, 0.3 M NaCl and 0.03 M EDTA.  相似文献   

2.
Successful application of hematoxylin-eosin staining to 0.5-1 μ sections of OsO4-fixed Epon-embedded mammalian tissue is made possible by first treating the sections for approximately 1 min at 25-30 C with 10% H2O2 acidified with 0.1 or 0.01 N H2SO4 to pH 3.2. Subsequent steps are: washing; drying; Hams hematoxylin at 50 C, 1-2 min; washing; drying; 0.2-0.3% NH4OH in 70% ethanol, 3-5 sec, drying at 50 C; 5% aqueous eosin for 3 & 45 sec at 25-30 C, washing; drying; clearing in xylene and mounting in resin. The use of acidified H2O2 prevents the staining of Epon and permits the characteristic staining picture to be obtained. Sections were attached to glass slides without adhesive and processed horizontally on a rack. Slides should be well drained and blotted before each drying step, to prevent formation of precipitate on the section.  相似文献   

3.
Using stepwise extraction of chromatin from Candida tropicalis by NaCl (0.1-1.0 M) the protein dissociated by 0.3 and 0.6 M NaCl (fractions 0.3 and 0.6) possessing the DNAase activity were obtained. These DNAases are activated by Mg2+ and cause preferential hydrolysis of heat-denaturated DNA. Fraction 0.3 DNAase has a maximum at neutral values of pH (around 7.0) and causes endonucleolytic hydrolysis of DNA. Fraction 0.6 DNAase causes exonucleolytic hydrolysis of DNA but a maximum at alkaline pH (8.0). The properties of isolated chromatin DNAases of Candida tropicalis differ from those of the known DNAases of the yeast Saccharomyces cerevisiae.  相似文献   

4.
Chemical lysis of bacterial cells using an alkaline solution containing a detergent may provide an efficient scalable means for selectively removing covalently closed circular plasmid DNA from high-molecular-weight contaminating cellular components including chromosomal DNA. In this article we assess the chemical lysis of E. coli cells by SDS in a NaOH solution and determine the impact of pH environment and shear on the supercoiled plasmid and chromosomal DNA obtained. Experiments using a range of plasmids from 6 kb to 113 kb determined that in an unfavorable alkaline environment, where the NaOH concentration during lysis is greater than 0.15 +/- 0.03 M (pH 12.9 +/- 0.2), irreversible denaturation of the supercoiled plasmid DNA occurs. The extent of denaturation is shown to increase with time of exposure and NaOH concentration. Experiments using stirred vessels show that, depending on NaOH concentration, moderate to high mixing rates are necessary to maximize plasmid yield. While NaOH concentration does not significantly affect chromosomal DNA contamination, a high NaOH concentration is necessary to ensure complete conversion of chromosomal DNA to single-stranded form. In a mechanically agitated lysis reactor the correct mixing strategy must balance the need for sufficient mixing to eliminate potential regions of high NaOH concentrations and the need to avoid excessive breakage of the shear sensitive chromosomal DNA. The effect of shear on chromosomal DNA is examined over a wide range of shear rates (10(1)-10(5) s(-1)) demonstrating that, while increasing shear leads to fragmentation of chromosomal DNA to smaller sizes, it does not lead to significantly increased chromosomal DNA contamination except at very high shear rates (about 10(4)-10(5) s(-1)). The consequences of these effects on the choice of lysis reactor and scale-up are discussed.  相似文献   

5.
This study is to improve the digestion pattern of miniprepped plasmid analyzed on gel. Frequently, some ambiguous DNA bands, which are suspected to be denatured DNA molecules, appear during electrophoresis of enzyme digested miniprepped plasmids. By employing Southern hybridization of two identical gels, one had been treated with denaturation-neutralization step and another without such treatment, we confirmed that many of these ambiguous DNA bands were single-stranded (SS) DNA molecules. The presence of SS DNA was due to the use of excess amount of NaOH during plasmid DNA purification with the conventional alkaline lysis method. We, therefore, modified the procedure and recommend that a half amount of NaOH (0.1N instead of 0.2N) should be used when isolating small quantity of plasmid DNA with the method.  相似文献   

6.
Different methods of extraction of bacterial DNA from bovine milk to improve the direct detection of Brucella by PCR were evaluated. We found that the use of a lysis buffer with high concentrations of Tris, EDTA, and NaCl, high concentrations of sodium dodecyl sulfate and proteinase K, and high temperatures of incubation was necessary for the efficient extraction of Brucella DNA. The limit of detection by PCR was 5 to 50 Brucella CFU/ml of milk.  相似文献   

7.
A simple method for extraction of fungal genomic DNA   总被引:8,自引:0,他引:8  
We have developed a new, simple and effective method for extraction of fungal genomic DNA. The initial steps involved suspension of freeze-dried mycelium in buffer containing sodium dodecyl sulphate, detachment of DNA from polysaccharides by mild shearing, NaCl precipitation of polysaccharides and protein, chloroform extraction and ethanol precipitation. The ethanol precipitate was then subjected to a second round of mild shearing, NaCl precipitation, chloroform extraction and ethanol precipitation. The procedure required approximately 1 h to perform. The method yielded 8-32 microg of high molecular weight DNA per 30 mg of freeze-dried mycelium when tested on six fungal species: Aspergillus niger, A. flavus, Fusarium graminarum, Neotyphodium lolii, Penicillium citrinum and Rhizopus nigricanes. The DNA was digestible with EcoRI, HindIII, SalI and BamHI. For the slow-growing N. lolii, a modification of the method was developed that removed the agar residue from colonies grown on agar plates by centrifugation at 13 000 rev min(-1) in the presence of CsCl. The modified method yielded 1.5-2 microg of high molecular weight DNA per colony.  相似文献   

8.
One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5'-32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194-6200), is extended to 3'-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 M LiCl in the solvolysis mixture and removing this salt from the dried hydrolysate by washing with ethanol. Rate and distribution of DNA cleavage in hot aqueous piperidine, containing 0.3 M NaCl, are studied in dependence of temperature, solvent, amine concentration, and reaction time. An increase in temperature strongly accelerates overall DNA degradation, but leaves the distribution of cleavage essentially unchanged. When 50% aqueous ethanol is substituted for water as the reaction solvent, the overall cleavage is slower, and scission at G-sites is enhanced relative to cleavage at the other bases. A rise in the piperidine concentration strongly accelerates the reaction, except at very high amine concentration. Cleavage at A-, G-, and C-sites increases steadily with reaction time, while the T-cleavage observed takes place primarily at the very beginning of the solvolysis.  相似文献   

9.
Distinct DNA polymerase activities have been found in the cytoplasmic and nuclear fractions of a baby hamster kidney cell line. They were separated by chromatography on DEAE-cellulose and partially purified by ammonium sulfate fractionation, DNA - cellulose and linear sucrose gradients. The cytoplasmic DNA polymerase exhibited an S-coefficient of 6.95 S in 0.15 M NaCl and its activity was highly sensitive to inhibition by N-ethylmaleimide and elevated temperatures, regardless of the presence of DNA template or other cofactors. It was stimulated by monovalent salts in the order of NH4 Cl greater than KCl greater than NaCl greater than CsCl greater than LiCl (inhibitory). The DNA polymerase extracted from nuclei sedimented with an S-value of 3.47 S, was resistant to inactivation by N-ethylmaleimide, and maximally stimulated by NaCl, while also being inhibited by LiCl. For optimal activity, both DNA polymerase activities required a divalent cation, with MgCl2 being more effective than MnCl2. Although the optimal pH values for the two enzyme activities differed slightly, glycine - NaOH buffer induced an alkaline shift of 1.5 pH units in the optimum of both enzymes. This was accompanied by an increase in the effectiveness of MnCl2 relative to MgCl2 for the cytoplasmic DNA polymerase.  相似文献   

10.
The binding of spermidine to deoxyribonucleic acid (DNA) was studied by equilibrium dialysis in a wide range of salt concentrations. The association constants ranged from 6 x 10(5) M-1 in 1 mM sodium cacodylate, pH 7.5, to 3 x 10(2) M-1 in 0.3 M NaCl. MgCl2 reduced spermidine-DNA interaction even more than NaCl so that in moderate-ionic-strength solutions (0.3 M NaCl, 0.002 M MgCl2) there was little detectable binding. Low-ionic-strength media were used to isolate DNA from Escherichia coli by a method shown to minimize loss of spermidine from the DNA. Considerable spermidine was associated with E. coli DNA, but control experiments indicated that complex formation had taken place during or after lysis of the cells. Exogenous DNA or ribonucleic acid added to spheroplasts at the time of their lysis caused most of the cellular spermidine to be scavenged by the extra nucleic acid. The data suggest that spermidine is relatively free in the cell and thereby capable of strong (high-affinity) associations with nucleic acids only after the ionic strength of the cell environment is lowered.  相似文献   

11.
Gastric mucosal damage was produced by intragastric administration of 96% ethanol, 0.6 M HCl, 0.2 M NaOH or 25% NaCl. The animals were killed 1 hr later, when the number and severity of gastric lesions (ulcers) was recorded. At the time of the sacrifice of the animals gastric mucosal superoxide dismutase (SOD) activity was measured. It was found that (1) the gastric mucosal damage could be induced by the administration of any of the necrotizing agents in all animals, (2) superoxide dismutase (SOD) activity increased significantly in the damaged gastric mucosa following 96% ethanol, while its activity decreased significantly during the development of gastric mucosal damage produced by the intragastric administration of 0.6 M HCl, 0.2 M NaOH or 25% NaCl. It has been concluded that: (1) the enzyme systems necessary to generate the superoxide free radical anions can be stimulated by ethanol, and they can be inhibited by the application of 0.6 M HCl, 0.2 M NaOH and 25% NaCl: (2) the observed stimulation or inhibition of the enzyme systems to generate the superoxide free radical anions may be of pathological significance in the development of gastric mucosal damage produced by the intragastric administration of 96% ethanol, 0.6 M HCl, 0.2 M. NaOH or 25% NaCl.  相似文献   

12.
13.
临床标本细菌基因组DNA提取方法探讨   总被引:5,自引:0,他引:5  
目的优化细菌基因组DNA提取方法,使其适合临床细菌分子生物学检测需要。方法分别采用专用DNA提取液法、热裂解法、溶菌酶法、热裂解法与碱性裂解法组合改良法,对纯培养细菌和临床标本中细菌基因组DNA进行提取。结果专用DNA提取液法、溶菌酶法提取成功率为100%,热裂解法革兰阳性菌提取成功率为0%,革兰阴性菌成功率为100%,碱性裂解液法在NaOH浓度大于4 mmol时提取成功,临床标本在NaOH溶液超过20 mmol/L并含2%SDS时细菌基因组DNA的提取成功率为100%。结论热裂解法与碱性裂解法组合改良法提取细菌基因组DNA方便快速、简单实用,适用临床标本检测。  相似文献   

14.
Preliminary studies in vitro using bacteriophage T7-DNA have shown that breaks formed in the DNA on the alkaline hydrolysis of apurinic sites and phosphotriesters can be distinguished from each other by measuring the extent of degradation of the DNA immediately after adding NaOH to 0.1 M and after incubating for 1 h in 0.5 M NaOH. This method has then been applied to the study of the formation and stability of phosphotriesters invivo. Methyl phosphotriesters formed in liver DNA following injection of mice with N-methyl-N-nitrosourea (MNUA) disappear with time (50% in 4-5 days). The concentration of ethyl phosphotriesters in liver DNA formed by injecting mice with N-ethyl-N-nitrosourea (ENUA) does not appear to decrease with time. Results of experiments on injecting methyl methane-sulphonate (MMS), ethyl methanesulphonate (EMS) and dimethyl sulphate (DMS) are also reported. The method described does not require the use of radioactively labelled reagents.  相似文献   

15.
Summary The influence of several biocompatible antifoam agents on the performance of ultrafiltration membranes for yeast cell concentration is described. Flux rates of water solutions and cell suspensions decreased in the presence of the antifoam agents. The anti-foam fouling effect was cumulative. Water was ineffective as a cleaning substance, while 0.1 NaOH and ethanol were used successfully for membrane washing.  相似文献   

16.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

17.
One-hour downward alkaline capillary transfer for blotting of DNA and RNA.   总被引:35,自引:0,他引:35  
The downward alkaline capillary transfer of DNA and RNA from agarose gel to a hybridization membrane was performed using a transfer solution containing 3 M NaCl and 8 mM NaOH. Under mild alkaline conditions, DNA and RNA were completely eluted from the agarose gel and bound to a hybridization membrane within 1 h. On the basis of this new method of transfer a blotting protocol, downward alkaline blotting, was elaborated. It provides a fast and efficient alternative to commonly used Southern and Northern blotting protocols. The downward alkaline blotting of DNA and RNA can be completed in 2.5 and 1.5 h, respectively, and can be used with both plastic and nitrocellulose membranes. In addition, the downward alkaline blotting protocol allows for a hybridization efficiency of DNA and RNA higher than that of the standard blotting protocols performed at neutral pH.  相似文献   

18.
Both ethanol and hexanol inhibited the growth of Escherichia coli, but their effects on the organization and composition of the cell envelope were quite different. Hexanol (7.8 x 10(-3) mM) increased membrane fluidity, whereas ethanol (0.67 M) had little effect. During growth in the presence of ethanol, the proportion of unsaturated fatty acids increased. The opposite change was induced by hexanol. Unlike hexanol, growth in the presence of ethanol resulted in the production of un-cross-linked peptidoglycan with subsequent lysis. Salt (0.3 M) protected cells against ethanol-induced lysis but potentiated growth inhibition by hexanol. Mutants isolated for resistance to ethanol-induced lysis synthesized cross-linked peptidoglycan during growth in the presence of ethanol but remained sensitive to hexanol. A general hypothesis was presented to explain the differential effects of ethanol and hexanol. All alcohols are viewed as similar in having both an apolar chain capable of interacting with hydrophobic environments and a hydroxyl function capable of hydrogen bonding. The differential effects of short-chain alcohols may represent effects due to the high molar concentrations of hydrogen bonding groups with an apolar end within the environment. These may replace bound water in some cases. With longer-chain alcohols such as hexanol, the effects of the acyl chain would dominate, and limitations of solubility and cellular integrity would mask these hydroxyl effects.  相似文献   

19.
Summary Chloroplast DNA of Chlamydomonas reinhardi contains many inverted repeated sequences. Analysis by hydroxyapatite binding, S1 nuclease digestion, and electron microscopy indicates that these sequences are 0.1–0.3 kilobase pairs in length, are widely distributed in the chloroplast genome, and make up 4–7% of the chloroplast DNA.Abbreviations RNA ribonucleic acid - rRNA ribosomal RNA - RNA complementary RNA - DNA deoxyribonucleic acid - chl DNA chloroplast DNA - HAP hydroxypatite - SSC 0.15 M NaCl, 0.015 M sodium citrate - 0.1xSSC, 2xSSC, 4.67xSSC 0.1, 2, and 4.67 times the concentration of SSC, respectively - TCA trichloroacetic acid - PB NaPO4 buffer, pH 6.8 - Kb Kilobase - KbP Kilobase pair  相似文献   

20.
The effect of bezafibrate (BZF) and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of BZF and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of inositol hexakisphosphate (IHP) and 2, 3-diphosphoglycerate (2,3-DPG). Next, in the presence of these allosteric effectors, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced. These findings indicate that BZF and CFA, as already reported for IHP and 2, 3-DPG, induce the stabilization of a low affinity conformation of the ligated hemoprotein (i.e., HbNO). Values of the apparent equilibrium constant for BZF and CFA binding to HbNO (K) are 1.5(+/- 0.2) x 10(-2) M and 2.8(+/- 0.3) x 10(-2) M, respectively, at pH 7.0 (in 0.1 M N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]/NaOH buffer system plus 0.1 M NaCl) and 20 degrees C. The results reported here represent clearcut evidence for BZF and CFA specific (i.e., functionally relevant) binding to a ligated derivative of Hb (i.e., HbNO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号