首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   3篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   6篇
  2007年   11篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   8篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
1.
The biocontrol properties of Trichoderma species are well documented, but their effectiveness in antagonism of the problematic Sclerotium cepivorum, the causal agent of white rot in Allium species, appears limited with reports of significant control only relating to deliberately-mutated strains of Trichoderma. Our previous studies have indicated the possibility of using selected naturally-occurring strains of the antagonist in the suppression of other diseases; now in vitro and controlled environment in vivo studies have indicated that a degree of control of Onion White Rot is possible, and that the selected antagonist strains can be used in integrated treatments with Iprodione to good effect. The possible value of such treatments is considered in light of other approaches to the suppression of this continuing problem.  相似文献   
2.
The refolding of recombinant protein from inclusion bodies expressed in Escherichia coli can present a process bottleneck. Yields at industrially relevant concentrations are restricted by aggregation of protein upon dilution of the denatured form. This article studies the effect of five factors upon the dilution refolding of protein in a twin impeller fed-batch system using refold buffer containing only the oxidized form of the redox reagent. Such a buffer is easier to prepare and more stable than a buffer containing both reduced and oxidized forms. The five factors chosen were: bulk impeller Reynolds number, mini-impeller Reynolds number, injection rate of denatured protein, redox ratio, and guanidine hydrochloride (GdHCl) concentration. A 2(5) factorial experiment was conducted at an industrially relevant protein concentration using lysozyme as the test system. The study identified that in the system used, the guanidine hydrochloride concentration, redox ratio, and injection rate were the most important factors in determining refolding yields. Two interactions were found to be important: redox ratio/guanidine hydrochloride concentration and guanidine hydrochloride concentration/injection rate. Conditions were also found at which high refolding yields could be achieved even with rapid injection and poor mixing efficiency. Therefore, a comparative assessment was carried out with minimal mixing in a simple batch-refolding mode of operation, which revealed different behavior to that of fed-batch. A graphical (windows of operation) analysis of the batch data suggested that optimal yields and productivity are obtained at high guanidine hydrochloride concentrations (1.2 M) and redox ratios of unity or greater.  相似文献   
3.
This paper evaluates a prototype agarose-based affinity adsorbent utilizing a bound synthetic ligand designed to replace Protein A as an IgG-affinity capture resin and compares its purification characteristics with four commercially available matrices for the recovery of polyclonal antibodies from crude hyperimmune ovine serum. The novel adsorbent was found to show the highest dynamic capacity (29.2 mg/mL) of all matrices under evaluation--30% higher than the other commercial adsorbents evaluated. When using a post-load caprylic acid wash, IgG yields of over 85% and purities of over 90% were achieved consistently over multiple loading cycles. To evaluate bead diffusion, inverted confocal microscopy was used to visualise fluorescent antibody binding on to individual adsorbent beads in real time. The results indicate that the binding characteristics of the prototype adsorbent are similar to those obtained with Protein G Sepharose. This study indicates that the high-capacity prototype matrix is a feasible and potentially cost-effective alternative for the direct capture of antibodies from crude ovine serum and may therefore also be applicable to the purification of other complex industrial feedstocks such as transgenic milk or monoclonal antibodies expressed using recombinant technologies.  相似文献   
4.
Single-column chromatography is widely used in the biopharmaceutical industries, although multi-column alternatives in the form of simulated moving bed (SMB) processes are now emerging. It may be difficult, however, to determine which column alternative will be best suited for a given application, and this work sets out to address this issue. A systematic approach is presented that is based on a full economic appraisal of each process alternative based on an optimization of the net annual profit. Single-column processes with and without recycling are considered, as are both the SMB and the Varicol process. The cyclic steady state for the SMB and Varicol processes is determined directly by complete discretization. The approach is applied to a case study based on a linear isotherm where it is found that for this particular system, a recycling policy is not necessary for the single column. When comparing the single-column process with the multi-column alternatives, the single column is the most economical provided the life time of the project is short; however, the economic benefits of the more capital-intensive multi-column processes are greater if the life time of the project is over 5 years. The SMB process is found to perform marginally better than the Varicol process over 15 years; however, this may be because not all extra degrees of freedom for the Varicol process were considered.  相似文献   
5.
The article examines how a small set of easily implemented micro biochemical engineering procedures combined with regime analysis and bioprocess models can be used to predict industrial scale performance of biopharmaceutical protein downstream processing. This approach has been worked on in many of our studies of individual operations over the last 10 years and allows preliminary evaluation to be conducted much earlier in the development pathway because of lower costs. It then permits the later large scale trials to be more highly focused. This means that the risk of delays during bioprocess development and of product launch are reduced. Here we draw the outcomes of this research together and illustrate its use in a set of typical operations; cell rupture, centrifugation, filtration, precipitation, expanded bed adsorption, chromatography and for common sources, E. coli, two yeasts and mammalian cells (GS-NSO). The general approach to establishing this method for other operations is summarized and new developments outlined. The technique is placed against the background of the scale-down methods that preceded it and complementary ones that are being examined in parallel. The article concludes with a discussion of the advantages and limitations of the micro biochemical engineering approach versus other methods.  相似文献   
6.
Expression systems capable of growing to high cell densities are now readily available and are popular due to the benefits of increased product concentration. However, such high solids density cultures pose a major challenge for bioprocess engineers as choosing the right separation equipment and operating it at optimal conditions is crucial for efficient recovery. This study proposes a methodology for the rapid determination of suitable operating conditions for the centrifugal recovery of high cell density fermentation broths. An ultra scale-down (USD) approach for the prediction of clarification and dewatering levels achieved in a range of typical high-speed centrifuges is presented. Together with a visualisation tool, a Window of Operation, this provides for the rapid analysis of separation performance and evaluation of the available operating conditions, as an aid in the selection of the centrifuge equipment most appropriate for a given process duty. A case study examining centrifuge selection for the processing of a high cell density Pichia pastoris culture demonstrates the method. The study examines semi-continuous disc-stack centrifuges and batch-operated machines such as multi-chamber bowls and Carr Powerfuges. Performance is assessed based on the variables of clarification, dewatering and product yield. Inclusion of limits imposed by the centrifuge type and design, and operation itself, serve to constrain the process and to define the Windows of Operation. The insight gained from the case study provides a useful indication of the utility of the methodology presented and illustrates the challenges of centrifuge selection for the demanding case of high solids concentration feed streams.  相似文献   
7.
A rapid method for designing integrated bioprocesses, using a combination of a windows of operation and a Pareto optimisation approach, is described in this paper. Within bioprocesses, multiple objectives are common, and achieving a satisfactory trade-off amongst the design objectives is crucial. Conventional optimisation results in the identification of the best operating policy for a given desired performance but gives little insight into how the process performance changes in the vicinity of the solution. In this paper, we explore the use of a Pareto optimisation technique to locate the optimal conditions for an integrated bioprocessing sequence and the benefits of first reducing the feasible space by the development of a series of windows of operation to provide a smaller search area for the optimisation. The final results are then presented in performance trade-off graphs and look-up tables, which give the design engineer an easily manageable solution set to work with. In this way, the decision-making procedure for design is made faster and more transparent. Two case studies illustrate the results from this integrated design methodology, some of which are counter-intuitive compared with the general design experience.  相似文献   
8.
This article describes the rapid prediction of recovery process performance for a new recombinant enzyme product on the basis of a broad portfolio of computer models and highly targeted experimentation. A process model for the recombinant system was generated by linking unit operation models in an integrated fashion, with required parameter estimation and physical property determination accomplished using data from scale-down studies. This enabled the generic modeling framework established for processing of a natural enzyme from bakers' yeast to be applied. An experimental study of the same operations at the pilot scale showed that the process model gave a conservative prediction of recombinant enzyme recovery. The model successfully captured interactions leading to a low overall product yield and indicated the need for further study of precipitate breakage in the feed zone of a disc stack centrifuge in order to improve performance. The utility of scale-down units as an aid to fast model generation and the advantage of integrating computer modeling and scale-down studies to accelerate bioprocess development are highlighted.  相似文献   
9.
This paper presents the application of a decision-support tool, SIMBIOPHARMA, for assessing different manufacturing strategies under uncertainty for the production of biopharmaceuticals. SIMBIOPHARMA captures both the technical and business aspects of biopharmaceutical manufacture within a single tool that permits manufacturing alternatives to be evaluated in terms of cost, time, yield, project throughput, resource utilization, and risk. Its use for risk analysis is demonstrated through a hypothetical case study that uses the Monte Carlo simulation technique to imitate the randomness inherent in manufacturing subject to technical and market uncertainties. The case study addresses whether start-up companies should invest in a stainless steel pilot plant or use disposable equipment for the production of early phase clinical trial material. The effects of fluctuating product demands and titers on the performance of a biopharmaceutical company manufacturing clinical trial material are analyzed. The analysis highlights the impact of different manufacturing options on the range in possible outcomes for the project throughput and cost of goods and the likelihood that these metrics exceed a critical threshold. The simulation studies highlight the benefits of incorporating uncertainties when evaluating manufacturing strategies. Methods of presenting and analyzing information generated by the simulations are suggested. These are used to help determine the ranking of alternatives under different scenarios. The example illustrates the benefits to companies of using such a tool to improve management of their R&D portfolios so as to control the cost of goods.  相似文献   
10.
This paper reports how financial and operational results from bioprocess simulations can be combined with other criteria pertinent to decision-making predictions to provide a more holistic approach to the evaluation of biomanufacturing alternatives. The classical additive weighting method, which is a multiattribute decision-making technique that can account for both the quantitative and qualitative parameters that ultimately need to be considered, is used. Its application is demonstrated through a case study that addresses whether start-up companies should invest in a stainless steel pilot plant or use disposable equipment for the production of early phase clinical trial material. The technique is extended to allow for uncertainty in parameters. An illustration of its use to compare alternatives based on cumulative frequency curves of the aggregate scores is provided. For cases where it is difficult to discriminate between the options, plots of risk versus reward are shown to be useful for identifying the best alternative based on the risk preference of the company's management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号