首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.

Background

Transduction of the murine retinal pigmented epithelium (RPE) with adenovirus vectors requires technically difficult and invasive subretinal injections. This study tested the hypothesis that recombinant vectors based on feline immunodeficiency virus (FIV) could access the retina following intravitreal injection.

Methods

FIV vectors expressing E. coli β‐galactosidase (FIVβgal) were injected alone, or in combination with adenovirus vectors expressing eGFP, into the vitreous of normal mice and eyes evaluated for transgene expression. In further studies, the utility of FIV‐mediated gene transfer to correct lysosomal storage defects in the anterior and posterior chambers of eyes was tested using recombinant FIV vectors expressing β‐glucuronidase. FIVβgluc vectors were injected into β‐glucuronidase‐deficient mice, an animal model of mucopolysacharridoses type VII.

Results

The results of this study show that similar to adenovirus, both corneal endothelium and cells of the iris could be transduced following intravitreal injection of FIVβgal. However, in contrast to adenovirus, intravitreal injection of FIVβgal also resulted in transduction of the RPE. Immunohistochemistry following an intravitreal injection of an AdeGFP (adenovirus expressing green fluorescent protein) and FIVβgal mixture confirmed that both viruses mediated transduction of corneal endothelium and cells of the iris, while only FIVβgal transduced cells in the retina. Using the β‐glucuronidase‐deficient mouse, the therapeutic efficacy of intravitreal injection of FIVβgluc (FIV expressing β‐glucuronidase) was tested. Intravitreal injection of FIVβgluc to the eyes of β‐glucuronidase‐deficient mice resulted in rapid reduction (within 2 weeks) of the lysosomal storage defect within the RPE, corneal endothelium, and the non‐pigmented epithelium of the ciliary process. Transgene expression and correction of the lysosomal storage defect remained for at least 12 weeks, the latest time point tested.

Conclusion

These studies demonstrate that intravitreal injection of FIV‐based vectors can mediate efficient and lasting transduction of cells in the cornea, iris, and retina. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

3.
Li C  Zheng Y  Wang X  Xia W  Gao H  Li D  Ma X 《Journal of cellular physiology》2011,226(11):2834-2840
Skin and soft tissue expansion stimulates the proliferation of skin epidermal basal cells and increase the dermal collagen deposition and angiogenesis. To explore the contribution of bone marrow‐derived stem cells (BMSCs) to the generation of “new” skin during the expansion, we used a chimeric mouse model in which the donor C57BL mice were engrafted with the bone marrow of enhanced green fluorescent protein (EGFP) transgenic mice. BMSCs were collected from the tibia and femur of EGFP+ transgenic mice, and then injected into normal C57BL mice via the tail vein (chimeric mice). Skin was obtained at different times (days 0, 7, 14, 21, 28, and 35). Skin stromal‐derived factor‐1 (SDF‐1) expression was evaluated. The number, distribution, and phenotype changes of EGFP+ cells in the skin were also evaluated by means of fluorescent microscopy. EGFP+ cells were present stably in the normal skin. The number of EGFP+ cells of the Group A mice changed with the tension, and reached the peak on day 21(17.1 ± 6.7%), as compared with either Group B (5.5 ± 1.0%) or Group C (5.1 ± 0.9%). The SDF‐1 expression in the expanded skin was significant increased (≈11‐fold, P < 0.01) compared to non‐expanded skin on day 21. Immunofluorescence showed EGFP+ cells were converted into vascular endothelial cells, epidermal cells, and spindle‐shaped dermal fibroblasts. Strain can promote the expression of SDF‐1 and facilitate the differentiation and proliferation of BMSCs in the expanded skin. J. Cell. Physiol. 226: 2834–2840, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
5.
Rui R  Qiu Y  Hu Y  Fan B 《Theriogenology》2006,65(4):713-720
The purpose of this study was to isolate porcine embryonic germ (EG) cells and establish transgenic EG cell lines. Plasmid DNA was the enhanced green fluorescent protein (EGFP) vector. Porcine EG cells in rapid proliferation (4th to 9th passage) were transfected with LipofecTamine 2000 and TransFast reagents. Porcine EG cells transfected with a complex of 1 microg of DNA and 2 microL of LipofecTamine 2000 reagent yielded four EG-EGFP cell lines, which emitted bright green fluorescence. EG-EGFP cells cultured for more than 2 weeks without passage gave rise to various differentiated phenotypes. In addition, to determine the degree to which EG cells become integrated into the inner cell mass of host embryos, 135 embryos were injected with porcine EG-EGFP cells; 110 embryos survived and developed into blastocysts (81.5%). Eighty-four chimeric embryos contained fluorescent cells after culture; 49 blastocysts contained EG-EGFP cells in the inner cell mass. Our results suggested that the chimeric rate would not be improved via using different stages of embryos for injection.  相似文献   

6.
Pluripotency of isolated rabbit inner cell masses (ICMs) and cultured (3 days) inner cell mass (ICM) cells was tested by injecting these donor cells into day 3.5 blastocysts (experiment 1) or day 3 morulae (experiment 2) to produce chimeric embryos. Injected (n = 107) and noninjected (n = 103) embryos were transferred to the opposite uterine horns of the same recipient females. Chimerism was determined by adenosine deaminase (ADA) isozyme analysis on fetal tissue and by eye pigmentation at midgestation. In experiment 1, 53% and 64%, respectively, of blastocysts injected with ICMs or cultured ICM cells developed to midgestation, compared with 52% and 48% for controls. Of these fetuses, four (31%) and one (6%), respectively, had ADA chimerism. In experiment 2,38% and 62%, respectively, of the morulae injected with ICMs or cultured ICM cells developed to midgestation, compared with 46% and 56% for control morulae. Six (43%) chimeric fetuses from morulae injected with ICMs were detected by ADA analysis, but 12 (86%) chimeric fetuses were detected by eye pigmentation, indicating that eye pigmentation was a more sensitive marker for chimerism than our ADA assay. None of the 14 fetuses recovered after injecting morulae with cultured ICM cells were chimeric with either marker. No chimeras developed from control embryos. These studies demonstrate (1) that pregnancy rates are not compromised by injection of blastocysts or morulae with ICMs or cultured ICM cells, (2) that chimeric rabbit fetuses can be produced by injecting ICMs into either blastocysts or morulae, and (3) that cultured ICM cells can contribute to embryonic development when injected into blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The production of chimeras, by use of cell transplantation, has proved to be highly valuable in studies of development by providing insights into cell fate, differentiation, and developmental potential. So far, chimeric honeybees have been created by nuclear transfer technologies. We have developed protocols to produce chimeric honeybees by use of cell transplantation. Embryonic cells were transplanted between pre-gastrula stage embryos (32-34 hr after oviposition) and hatched larvae were reared in vitro for 4 days. Chimeric individuals were detected by use of microsatellite analysis and a conservative estimation approach. 4.8% of embryos, posteriorly injected with embryonic cells, developed into chimeric honeybee larvae. By injection of cells pre-stained with fluorescent cell tracer dye, we studied the integration of transplanted cells in the developing embryos. Number of injected cells varied from 0 to 50 and cells remained and multiplied mainly in the area of injection.  相似文献   

8.
Summary: Nkx2‐5, one of the earliest cardiac‐specific markers in vertebrate embryos, was used as a genetic locus to knock in the Cre recombinase gene by homologous recombination. Offspring resulting from heterozygous Nkx2‐5/Cre mice mated to ROSA26 (R26R) reporter mice provided a model system for following Nkx2‐5 gene activity by β‐galactosidase (β‐gal) activity. β‐gal activity was initially observed in the early cardiac crescent, cardiomyocytes of the looping heart tube, and in the epithelium of the first pharyngeal arch. In later stage embryos (10.5–13.5 days postcoitum, dpc), β‐gal activity was observed in the stomach and spleen, the dorsum of the tongue, and in the condensing primordium of the tooth. The Nkx2‐5/Cre mouse model should provide a useful genetic resource to elucidate the role of loxP manipulated genetic targets in cardiogenesis and other developmental processes. genesis 31:176–180, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
The objective of this study was to compare developmental capacity of rabbit chimeric embryos and the allocation of the EGFP gene expression to the embryoblast (ICM) or embryonic shield. We produced chimeric embryos (TR< >N) by synchronous transfer of two or three blastomeres at the 16-cell stage from transgenic (TR) into normal host embryos (N) at the same stage. In the control group, two to three non-transgenic blastomeres were used to produce chimeric embryos. The TR embryos were produced by microinjection of EGFP into both pronuclei of fertilized rabbit eggs. The developmental rate and allocation of EGFP-positive cells of the reconstructed chimeric embryos was controlled at blastocyst (96 h PC) and embryonic shield (day 6) stage. All chimeric embryos (120/120, 100%) developed up to blastocyst stage. Using fluorescent microscope, we detected green signal (EGFP expression). In 90 chimeric (TR< >N) embryos (75%). Average total number of cells in chimeric embryos at blastocyst stage was 175+/-13.10, of which 58+/-2.76 cells were found in the ICM area. The number of EGFP-positive cells in the ICM area was 24+/-5.02 (35%). After the transfer of 50 chimeric rabbit embryos at the 16-cell stage, 20 embryos (40%) were flushed from five recipients on day 6 of pregnancy, of which five embryos (25%) were EGFP positive at the embryonic shield stage. Our results demonstrate that transgenic blastomeres in synchronous chimeric embryos reconstructed from TR embryos have an ability to develop and colonize ICM and embryonic shield area.  相似文献   

10.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

11.
A study of meiosis in chimeric mouse fetal gonads   总被引:1,自引:0,他引:1  
The influence of somatic environment on the onset and progression of meiosis in fetal germ cells was studied in chimeric gonads produced in vitro by dissociation-reaggregation experiments. Germ cells isolated from testes or ovaries of 11.5-13.5 days post coitum (dpc) CD-1 mouse embryos were loaded with the fluorescent supravital dye 5-6 carboxyfluorescein diacetate succinimyl ester (CFSE) and mixed with a cell suspension obtained by trypsin-EDTA treatment of gonads of various ages and of the same or opposite sex. Whereas 11.5 dpc donor germ cells appeared unable to survive in the chimeric gonads obtained, about 76% of the CFSE-labeled female germ cells obtained from 12.5 dpc donor embryos (premeiotic germ cells) found viable within host ovarian tissues showed a meiotic nucleus. In contrast, a smaller number (about 19%) were in meiosis in chimeric testes. None or very few of donor male germ cells entered meiosis in testes or ovarian host tissues. Aggregation of meiotic 13.5 dpc female germ cells with testis tissues from 13.5 to 14.5 dpc embryos resulted in inhibition of meiotic progression and pyknosis in most donor germ cells. These results support the existence of a meiosis-preventing substance or a factor causing oocyte degeneration in the fetal mouse testis, but not of a meiosis-inducing substance in the fetal ovary.  相似文献   

12.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

13.
Experiments were conducted to develop a simple and reliable technique to produce chimeric rabbits from morula stage embryos. In Experiments 1 and 2, an in-vitro test of viability was initially performed by culturing embryos to the blastocyst stage. Ninety-three percent of the “chimeric” embryos developed to the blastocyst stage compared to 94% for controls when embryos were manipulated soon after collection (Exp. 1). Eighty-one percent chimeric embryos and 78% control embryos developed to blastocyst stage when embryos were held at room temperature for 4 hr (Exp. 2). In Experiment 3, enough morula-stage embryos were available from true breeding Dutch-belted and albino rabbits to form potentially 67 diverse “color” pairs. These micromanipulated pairs of morulae were successfully combined to produce 64 chimeric embryos (96%, 64/67). They were transferred to the uteri of seven recipient does and three became pregnant producing 13 young. Four of the young exhibited substantial overt chimerism (31%) and one more was a possible chimera.  相似文献   

14.
We developed a highly sensitive chemiluminescent (CL) assay for hydrogen peroxide using 10‐methyl‐9‐(phenoxycarbonyl) acridinium fluorosulfonate (PMAC) that produced chemiluminescence under neutral conditions and applied it to an enzyme immunoassay (EIA). One picomole of hydrogen peroxide could be detected using the optimized PMAC‐CL method and 6.2 × 10‐20 mol β‐d ‐galactosidase (β‐gal) could be detected by combining an indoxyl derivative substrate and the proposed PMAC‐CL method. This highly sensitive CL β‐gal assay was applied to an EIA for thyroid‐stimulating hormone (TSH) using β‐gal as a label enzyme; 0.02–100.0 μU/mL TSH in human serum could be assayed directly and with high reproducibility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1‐positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1–GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1‐positive cells out of the differentiated cell population. The GFP‐positive cells (i.e. Msi1‐positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non‐obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP‐positive cells, but not in the GFP‐negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1‐positive cells than those from Msi1‐negative cells (P<0.05). The grafts from the Msi1‐negative cells contained more mesodermal‐like tissues than those from the Msi1‐positive cells. The pMsi1–GFP vector can be used to sort Msi1‐positive cells from a cell population derived from mouse embryonic stem cells. The Msi1‐positive cells can differentiate into neural and intestinal epithelial‐like cells in vivo.  相似文献   

16.
Descendants of E9.5 Pax7‐expressing (in red, β‐gal+) central dermomyotome cells contribute to myofibers (in green, MF‐20+, a myosin heavy chain protein) in the E16.5 mouse embryo. Nuclei are blue (DAPI). The β‐gal+/MF‐20_ cells that are intermingled with myofibers are likely myogenic progenitors. See the article by Lepper and Fan in this issue.  相似文献   

17.
To establish techniques for chimera formation and to obtain further knowledge of chimerism, chimeric loach were produced using the wild strain as the donor and the orange strain as the recipient by cell transplantation. Transplantation between embryos at two different stages was performed to achieve efficient chimera formation. In the combination of the early-mid-blastula as the donor and the late-blastula as the recipient, 100-150 blastomeres were injected into the blastoderm of the recipient and the rate of chimera formation was 46.2%. On the other hand, in the combination of early-mid-blastula and early-gastrula, only 30 blastomeres were injected and the rate of chimera formation was 80.0%. These results demonstrating the combination of embryonic stages may provide a key for efficient chimera formation. We also compared the number of melanophores on chimeric larvae with that on donor cells labelled with latex beads; it was found that the number of transplanted cells has a profound effect on chimerism, whereas the site of pigmentation is not always in agreement with the site of actual transplantation of donor cells.  相似文献   

18.
Method of oocyte activation affects cloning efficiency in pigs   总被引:1,自引:0,他引:1  
The following experiments compared the efficiency of three fusion/activation protocols following somatic cell nuclear transfer (SCNT) with porcine somatic cells transfected with enhanced green fluorescent protein driven by the chicken β‐actin/rabbit β‐globin hybrid promoter (pCAGG‐EGFP). The three protocols included electrical fusion/activation (NT1), electrical fusion/activation followed by treatment with a reversible proteasomal inhibitor MG132 (NT2) and electrical fusion in low Ca2+ followed by chemical activation with thimerosal/dithiothreitol (NT3). Data were collected at Days 6, 12, 14, 30, and 114 of gestation. Fusion rates, blastocyst‐stage mean cell numbers, recovery rates, and pregnancy rates were calculated and compared between protocols. Fusion rates were significantly higher for NT1 and NT2 compared to NT3 (P < 0.05). There was no significant difference in mean nuclear number. Pregnancy rate for NT2 was 100% (n = 19) at all stages collected and was significantly higher than NT1 (71.4%, n = 28; P < 0.05), but was not significantly higher than NT3 (82.6%, n = 23; P < 0.15). Recovery rates were calculated based on the number of embryos, conceptuses, fetuses, or piglets present at the time of collection, divided by the number of embryos transferred to the recipient gilts. Recovery rates between the three groups were not significantly different at any of the stages collected (P > 0.05). All fusion/activation treatments produced live, pCAGG‐EGFP positive piglets from SCNT. Treatment with MG132 after fusion/activation of reconstructed porcine embryos was the most effective method when comparing the overall pregnancy rates. The beneficial effect of NT2 protocol may be due to the stimulation of proteasomes that infiltrate donor cell nucleus shortly after nuclear transfer. Mol. Reprod. Dev. 76: 490–500, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Albino mouse embryonic cells (Gpi-la/a) at 3.5–8.5 and 11.5 days were aggregated with zona cut 8–16 cell stage embryos from F1 females (Gpi-1 b/b), respectively. The aggregated embryos were transferred to pseudopregnant female mice. The recipients were allowed to go to term or were dissected at mid-gestation to assess the donor contribution in the conceptuses using glucose phosphate isomerase (GPI) analysis. The donor cells, which were previously labeled with fluorescent latex microparticles, were aggregated with embryos, and the allocation of the donor cells at the compacted morula and blastocyst stages were observed under a fluorescence microscope. When 3.5 and 45 day old inner-cell-mass (ICM) cells were used, fertile chimeric mice were obtained (50 and 19%, respectively), and when 5.5 days old primitive ectoderm cells were aggregated, they did not form chimeras but contributed to the fetuses, placenta and membrane after 13.5 days of pregnancy. However, cells from further stages never contributed to the conceptuses even though they were analyzed after 10.5 days of pregnancy. The labeled donor cells at these stages were not positively incorporated in the interior part of the compacted morula and the ICM of the blastocyst stage unlike the ICM at 3.5 days post-coitum after overnight culture.  相似文献   

20.
Pluripotency of mouse trophectoderm (TE) cells was examined using a nuclear transfer technique. We transferred a TE cell to an enucleated oocyte and cultured the reconstituted oocyte to be blastocyst stage. Then a portion of the inner cell mass (ICM) isolated from the TE-origin blastocyst was injected into the cavity of a fertilized blastocyst to produce a chimeric embryo, which was transferred to a recipient female. Of 319 oocytes reconstituted with TE cells, 263 (82.4%) had a single nucleus (1PN), 3 (0.9%) had 2 nuclei (2PN) and 53 (16.6%) had a nucleus with a polar body (1PN1PB). Although the oocytes with 1PN and 2PN developed to blastocysts (81 of 263, 30.8% and 1 of 3, respectively), only those with 1PN were used to produce chimeric blastocysts. After the transfer of chimeric embryos to recipient females, 7 (28%) of 25 conceptuses analyzed at midgestation showed chimerism. Of those 5 (71%), 6 (86%) and 4 (57%) chimeric conceptuses showed distribution of donor nuclei in the fetus, membrane and placenta, and the distributions were 10 to 65, 10 to 50 and 10 to 15%, respectively. Of the 23 young obtained, 7 (30%; 2 males and 5 females) were coat color chimeras. The contributions of donor nuclei were detected in the brain, lung, heart, liver, kidney, testis, ovary and blood. Each coat-color chimeric mouse was mated with CD-1 male or female mice, but no germ line chimera was obtained. When ICM cells were used as the control nuclear donor, the contribution was equivalent to those of TE cells. In conclusion, pluripotency of mouse TE cells on a somatic line was induced, and chimeric young were obtained using a nuclear transplantation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号