首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6292篇
  免费   489篇
  国内免费   2篇
  2023年   29篇
  2022年   26篇
  2021年   156篇
  2020年   106篇
  2019年   126篇
  2018年   159篇
  2017年   140篇
  2016年   226篇
  2015年   331篇
  2014年   331篇
  2013年   555篇
  2012年   566篇
  2011年   500篇
  2010年   333篇
  2009年   257篇
  2008年   404篇
  2007年   397篇
  2006年   365篇
  2005年   268篇
  2004年   281篇
  2003年   264篇
  2002年   243篇
  2001年   51篇
  2000年   45篇
  1999年   56篇
  1998年   56篇
  1997年   46篇
  1996年   43篇
  1995年   32篇
  1994年   40篇
  1993年   42篇
  1992年   28篇
  1991年   23篇
  1990年   22篇
  1989年   14篇
  1988年   16篇
  1987年   19篇
  1986年   13篇
  1985年   11篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   18篇
  1980年   7篇
  1978年   13篇
  1977年   8篇
  1976年   7篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
排序方式: 共有6783条查询结果,搜索用时 31 毫秒
1.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
3.
4.
5.
E. A. Raleigh  R. Trimarchi    H. Revel 《Genetics》1989,122(2):279-296
We have genetically analyzed, cloned and physically mapped the modified cytosine-specific restriction determinants mcrA (rglA) and mcrB (rglB) of Escherichia coli K-12. The independently discovered Rgl and Mcr restriction systems are shown to be identical by three criteria: 1) mutants with the RglA- or RglB- phenotypes display the corresponding McrA- or McrB- phenotypes, and vice versa; 2) the gene(s) for RglA and McrA reside together at one locus, while gene(s) for RglB and McrB are coincident at a different locus; and 3) RglA+ and RglB+ recombinant clones complement for the corresponding Mcr-deficient lesions. The mcrA (rglA) gene(s) is on the excisable element e14, just clockwise of purB at 25 min. The mcrB (rglB) gene(s), at 99 min, is in a cluster of restriction functions that includes hsd and mrr, determinants of host-specific restriction (EcoK) and methyladenine-specific restriction respectively. Gene order is mcrB-hsdS-hsdM-hsdR-mrr-serB. Possible models for the acqusition of these restriction determinants by enteric bacteria are discussed.  相似文献   
6.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   
7.
Cytochalasins are routinely used to stimulate a variety of functions in eukaryotic cells even though their precise mode of action remains to be elucidated. In the present work we used the fluorescent Ca2+ indicator quin2 to study the effect of various cytochalasins, cytochalasins A, B, C, D, E (CA, CB, CC, CD, CE) and dihydrocytochalasin B (dhCB) on the intracellular Ca2+ concentration ([Ca2+]i) in various types of leukocytes, viz, neutrophils and lymphocytes. In human neutrophils, cytochalasins increase [Ca2+]i mainly by releasing Ca2+ from membrane-bound, intracellular stores. Thus, in order to readily appreciate the effect of cytochalasins on [Ca2+ )i, these cells must be loaded with low intracellular quin2 concentrations. On the other hand, in peripheral blood lymphocytes, splenocytes and thymocytes, the increase in [Ca2+]i is predominantly due to an increased Ca2+ influx from the extracellular medium. In addition, we found that in neutrophils these drugs prolong the increase in [Ca2+]i induced by chemotactic peptides, probably by increasing the cell permeability to Ca2+. Finally, in thymocytes, cytochalasins potentiate the production of inositol phosphates induced by the polyclonal mitogen concanavalin A (conA).  相似文献   
8.
9.
The pattern of acetylcholinesterase (AChE) molecular forms, obtained by sucrose gradient sedimentation, was studied at different in vitro developmental stages of myogenic cells isolated from adult mouse skeletal muscle. Only the globular forms were present in rapidly dividing satellite cells during the first days in culture. After myotube formation, a pattern similar to that described in mammalian fast-twitch skeletal muscle was observed. This pattern did not change during the following period in culture (up to 1 month) nor could it be modified by co-culturing with spinal cord motoneurons or by addition of brain-derived extracts. The internal-external localization of AChE molecular forms has been determined by the use of echothiophate iodide, a membrane-impermeant irreversible inhibitor of AChE. Echothiophate-treated cultures showed about 40% of both asymmetric and globular forms localized on the sarcolemma, with their active sites oriented outward. Analysis of culture medium from untreated cultures revealed the presence of both asymmetric and globular forms. When the same analysis was repeated on cultures of myoblasts derived from 16-day-old mouse embryos, the pattern of AChE forms was different. The myotubes derived from these cells exhibit a very small proportion of asymmetric form, which was not released into the medium. This pattern was not further modified during the following days of culture, nor by co-cultures with spinal cord motoneurons or by incubations with brain-derived extracts. Thus, the myotubes derived from myoblasts express in culture a clear phenotypic difference when compared to the corresponding myotubes from satellite cells, supporting the view that these two myogenic cells are endowed with different developmental programs.  相似文献   
10.
Summary Peripheral blood DNA was hybridized to the full-length cDNA and the cloned structural gene of human aldolase B. With PvuII endonuclease a restriction fragment length polymorphism was detected that was present in the heterozygous state in about 21% of the individuals tested. A map of the human aldolase gene was constructed for the two groups of individuals found to produce different fragments after PvuII digestion. This allowed the localization of the polymorphic site within the gene, which was found to be due to the loss of a PvuII site in the last intron upstream from the 3 end. This polymorphism may be used as a genetic marker to study individuals affected by hereditary fructose intolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号