首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphospate (RuBP) carboxylase (EC 4.1.1.39) activities in leaves of different maize hybrids grown under field conditions (high light intensity) and in a growth chamber (low light intensity) were determined. Light intensity and leaf age affected PEP carboxylase activity, whereas RuBP carboxylase was affected by leaf age only at low light intensity. PEP carboxylase/RuBP carboxylase activity ratio decreased according to light intensity and leaf age. Results demonstrate that Zea mays grown under field conditions is a typical C4 species in all leaves independently from their position on the stem, whereas it may be a C3 plant when it is grown in a growth chamber at low light intensityAbbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

2.
3.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

4.
Mesophyll cells were isolated from sunflower leaves by an enzymic procedure. The cell suspensions possessed high photosynthesis rates. The products of cell photosynthesis were similar to the products of leaf disc photosynthesis. The relatively high radioactivity incorporated into malate after 14CO2 feeding suggests that PEP carboxylase might participate in CO2 fixation. Sunflower leaf extracts possessed a PEP carboxylase activity slightly higher than that of other C3 species. Inhibition of PEP carboxylase by maleate decreased cell photosynthesis by only 15% and the first products of cell photosynthesis were phosphorylated compounds. It is concluded that the high photosynthesis rates displayed by sunflower are not due to a parallel C4 pathway of photosynthesis but are rather dependent, at least in part, on the activity, or the amount, of RuBP carboxylase.Abbreviations PVP polyvinylpyrrolidone - PDS potassium dextran sulfate - DTT dithiothreitol - PEG polyethyleneglycol - RuBP ribulose 1,5-bisphosphate - PEP phosphoenolpyruvate - Mes 2-(N-morpholino) ethanesulfonic acid - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

13.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   

14.
To play an essential role in C4 photosynthesis, the maize C4 phosphoenolpyruvate carboxylase gene (PPCZm1) acquired many new expression features, such as leaf specificity, mesophyll specificity, light inducibility and high activity, that distinguish the unique C4 PPC from numerous non-C4 PPC genes in maize. We present here the first investigation of the developmental, cell-specific, light and metabolic regulation of the homologous C4 PPCZm1 promoter in stable transgenic maize plants. We demonstrate that the 1.7 kb of the 5-flanking region of the PPCZm1 gene is sufficient to direct the C4-specific expression patterns of -glucuronidase (GUS) activity, as a reporter, in stable transformed maize plants. In light-grown shoots, GUS expression was strongest in all developing and mature mesophyll cells in the leaf, collar and sheath. GUS activity was also detected in mesophyll cells in the outer husks of ear shoots and in the outer glumes of staminate spikelets. We did not observe histological localization of GUS activity in light- or dark-grown callus, roots, silk, developing or mature kernels, the shoot apex, prop roots, or pollen. In addition, we used the stable expressing transformants to conduct and quantify physiological induction studies. Our results indicate that the expression of the C4 PPCZm1-GUS fusion gene is mesophyll-specific and influenced by development, light, glucose, acetate and chloroplast biogenesis in transgenic maize plants. These studies suggest that the adoption of DNA regulatory elements for C4-specific gene expression is a crucial step in C4 gene evolution.  相似文献   

15.
16.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

17.
In this report, the effects of light on the activity and allosteric properties of phosphoenolpyruvate (PEP) carboxylase were examined in newly matured leaves of several C3 and C4 species. Illumination of previously darkened leaves increased the enzyme activity 1.1 to 1.3 fold in C3 species and 1.4 to 2.3 fold in C4 species, when assayed under suboptimal conditions (pH 7) without allosteric effectors. The sensitivities of PEP carboxylase to the allosteric effectors malate and glucose-6-phosphate were markedly different between C3 and C4 species. In the presence of 5 mM malate, the activity of the enzyme extracted from illuminated leaves was 3 to 10 fold higher than that from darkened leaves in C4 species due to reduced malate inhibition of the enzyme from illuminated leaves, whereas it increased only slightly in C3 species. The Ki(malate) for the enzyme increased about 3 fold by illumination in C4 species, but increased only slightly in C3 species. Also, the addition of the positive effector glucose-6-phosphate provided much greater protection against malate inhibition of the enzyme from C4 species than C3 species. Feeding nitrate to excised leaves of nitrogen deficient plants enhanced the degree of light activation of PEP carboxylase in the C4 species maize, but had little or no effect in the C3 species wheat. These results suggest that post-translational modification by light affects the activity and allosteric properties of PEP carboxylase to a much greater extend in C4 than in C3 species.  相似文献   

18.
The in-situ inter- and intracellular localization patterns of phosphoenolpyruvate (PEP) and ribulose 1,5-bisphosphate (RuBP) carboxylases in green leaves of severalPanicum species were investigated using an indirect immunofluorescence technique. Four species were examined and compared:P. miliaceum (C4),P. bisulcatum (C3), andP. decipiens andP. milioides (C3–C4 intermediates which have Kranz-like leaf anatomy and reduced photorespiration). In the C4 Panicum, PEP carboxylase was located in the cytosol of the mesophyll cells and RuBP carboxylase was restricted to the bundle-sheath chloroplasts. In contrast, in the C3 Panicum species, PEP carboxylase was found throughout the leaf chlorenchyma, in both the cytosol and chloroplasts, and RuBP carboxylase was located in the chloroplasts. For the C3–C4 intermediate plants, the patterns depended on the species examined. ForP. decipiens, the in-situ localization of both carboxylases was similar to that described forP. bisulcatum and other C3 plants. However, inP. milioides, PEP carboxylase was found exclusively in the cytosol of the mesophyll cells, as inP. miliaceum and other C4 species, whereas RuBP carboxylase was distributed in both the mesophyll and bundle-sheath chloroplasts.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

19.
Phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.3) is a key enzyme of C4 photosynthesis. It has evolved from ancestral non-photosynthetic (C3) isoforms and thereby changed its kinetic and regulatory properties. We are interested in understanding the molecular changes, as the C4 PEPCases were adapted to their new function in C4 photosynthesis and have therefore analysed the PEPCase genes of various Alternanthera species. We isolated PEPCase cDNAs from the C4 plant Alternanthera pungens H.B.K., the C3/C4 intermediate plant A. tenella Colla, and the C3 plant A. sessilis (L.) R.Br. and investigated the kinetic properties of the corresponding recombinant PEPCase proteins and their phylogenetic relationships. The three PEPCases are most likely derived from orthologous gene classes named ppcA. The affinity constant for the substrate phosphoenolpyruvate (K 0.5 PEP) and the degree of activation by glucose-6-phosphate classified the enzyme from A. pungens (C4) as a C4 PEPCase isoform. In contrast, both the PEPCases from A. sessilis (C3) and A. tenella (C3/C4) were found to be typical C3 PEPCase isozymes. The C4 characteristics of the PEPCase of A. pungens were accompanied by the presence of the C4-invariant serine residue at position 775 reinforcing that a serine at this position is essential for being a C4 PEPCase (Svensson et al. 2003). Genomic Southern blot experiments and sequence analysis of the 3′ untranslated regions of these genes indicated the existence of PEPCase multigene family in all three plants which can be grouped into three classes named ppcA, ppcB and ppcC.  相似文献   

20.
《Gene》1998,216(2):233-243
Starch branching enzymes (SBE) which catalyse the formation of α-1,6-glucan linkages are of crucial importance for the quantity and quality of starch synthesized in plants. In maize (Zea mays L.), three SBE isoforms (SBEI, IIa and IIb) have been identified and shown to exhibit differential expression patterns. As a first step toward understanding the regulatory mechanisms controlling their expression, we isolated and sequenced a maize genomic DNA (−2190 to +5929) which contains the entire coding region of SBEI (Sbe1) as well as 5′-and 3′-flanking sequences. Using this clone, we established a complete genomic organization of the maize Sbe1 gene. The transcribed region consists of 14 exons and 13 introns, distributed over 5.7 kb. A consensus TATA-box and a G-box containing a perfect palindromic sequence, CCACGTGG, were found in the 5′-flanking region. Genomic Southern blot analysis indicated that two Sbe1 genes with divergent 5′-flanking sequences exist in the maize genome, suggesting the possibility that they are differentially regulated. A chimeric construct containing the 5′-flanking region of Sbe1 (−2190 to +27) fused to the β-glucuronidase gene (pKG101) showed promoter activity after it was introduced into maize endosperm suspension cells by particle bombardment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号