首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng J  Wang M  Zhang X  Wang Y  Ai C  Liu J  Qiu G 《Biotechnology letters》2008,30(7):1239-1244
Sulfite reductase (SiR) is a large and soluble enzyme which catalyzes the transfer of six electrons from NADPH to sulfite to produce sulfide. The sulfite reductase flavoprotein (SiR-FP) contains both FAD and FMN, and the sulfite reductase hemoprotein (SiR-HP) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is arranged so that the redox cofactors in the FAD-FMN-Fe(4)S(4)-Heme sequence make an electron pathway between NADPH and sulfite. Here we report the cloning, expression, and characterization of the SiR-HP of the sulfite reductase from Acidithiobacillus ferrooxidans. The purified SiR-HP contained a [Fe(4)S(4)] cluster. Site-directed mutagenesis results revealed that Cys427, Cys433, Cys472 and Cys476 were in ligating with the [Fe(4)S(4)] cluster of the protein.  相似文献   

2.
The flavodoxin-like domain, missing in the three-dimensional structure of the monomeric, simplified model of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has now been expressed independently. This 168 amino acid protein was named SiR-FP18 with respect to its native molecular weight and represents the FMN-binding domain of SiR-FP. This simplified biological object has kept the main characteristics of its counterpart in the native protein. It could incorporate FMN exclusively and stabilize a neutral air-stable semiquinone radical. Both the radical and the fully reduced forms of SiR-FP18 were able to transfer their electrons to DCPIP or cytochrome c quantitatively. SiR-FP18 was able to form a highly stable complex with SiR-HP, the hemoprotein component of the sulfite reductase containing an iron-sulfur cluster coupled to a siroheme. In agreement with the postulated catalytic cycle of SiR-FP, only the fully reduced form of SiR-FP18 could transfer one electron to SiR-HP, the transferred electron being localized exclusively on the heme. As isolated SiR-FP18 has kept the main characteristics of the FMN-binding domain of the native protein, a structural analysis by NMR was performed in order to complete the partial structure obtained previously. Structural modeling was performed using sequence homologues, cytochrome P450 reductase (CPR; 29% identity) and bacterial cytochrome P450 (P450-BM3; 26% identity), as conformational templates. These sequences were anchored using common secondary structural elements identified from heteronuclear NMR data measured on the protein backbone. The resulting structural model was validated, and subsequently refined using residual (C(alpha)-C', N-H(N), and C'-H(N)) dipolar couplings measured in an anisotropic medium. The overall fold of SiR-FP18 is very similar to that of bacterial flavodoxins and of the flavodoxin-like domain in CPR or P450-BM3.  相似文献   

3.
Escherichia coli NADPH-sulfite reductase (SiR) is a 780 kDa multimeric hemoflavoprotein composed of eight alpha-subunits (SiR-FP) and four beta-subunits (SiR-HP) that catalyses the six electron reduction of sulfite to sulfide. Each beta-subunit contains a Fe4S4 cluster and a siroheme, and each alpha-subunit binds one FAD and one FMN as prosthetic groups. The FAD gets electrons from NADPH, and the FMN transfers the electrons to the metal centers of the beta-subunit for sulfite reduction. We report here the 1.94 A X-ray structure of SiR-FP60, a recombinant monomeric fragment of SiR-FP that binds both FAD and FMN and retains the catalytic properties of the native protein. The structure can be divided into three domains. The carboxy-terminal part of the enzyme is composed of an antiparallel beta-barrel which binds the FAD, and a variant of the classical pyridine dinucleotide binding fold which binds NADPH. These two domains form the canonic FNR-like module, typical of the ferredoxin NADP+ reductase family. By analogy with the structure of the cytochrome P450 reductase, the third domain, composed of seven alpha-helices, is supposed to connect the FNR-like module to the N-terminal flavodoxine-like module. In four different crystal forms, the FMN-binding module is absent from electron density maps, although mass spectroscopy, amino acid sequencing and activity experiments carried out on dissolved crystals indicate that a functional module is present in the protein. Our results clearly indicate that the interaction between the FNR-like and the FMN-like modules displays lower affinity than in the case of cytochrome P450 reductase. The flexibility of the FMN-binding domain may be related, as observed in the case of cytochrome bc1, to a domain reorganisation in the course of electron transfer. Thus, a movement of the FMN-binding domain relative to the rest of the enzyme may be a requirement for its optimal positioning relative to both the FNR-like module and the beta-subunit.  相似文献   

4.
NADPH-sulfite reductase flavoprotein (SiR-FP) was purified from a Salmonella typhimurium cysG strain that does not synthesize the hemoprotein component of the sulfite reductase holoenzyme. cysJ, which codes for SiR-FP, was cloned from S. typhimurium LT7 and Escherichia coli B, and both genes were sequenced. Physicochemical analyses and deduced amino acid sequences indicate that SiR-FP is an octamer of identical 66-kDa peptides and contains 4 FAD and 4 FMN per octamer. Potentiometric titrations of SiR holoenzyme, SiR-FP, and FMN-depleted SiR-FP yielded the following redox potentials for the prosthetic groups at pH 7.7: E'1 (FMNH./FMN) = -152 mV; E'2 (FMNH2/FMNH.) = -327 mV; E'3 (FADH./FAD) = -382 mV; E'4 (FADH2/FADH.) = -322 mV. Microcoulometric titration of SiR-FP at 25 degrees C yielded data which were in full agreement with these potentials. Spectroscopic and catalytic studies of native SiR-FP and of SiR-FP depleted of FMN support the following electron flow sequence: NADPH----FAD----FMN. FMN can then contribute electrons to the hemoprotein component of sulfite reductase, as well as to cytochrome c and various diaphorase acceptors. The FMN is postulated to cycle between the FMNH2 and FMNH. oxidation states during catalysis; in this sense SiR-FP shares a catalytic mechanism with NADPH-cytochrome P-450 oxidoreductase. SiR-FP domains involved in binding FMN, FAD, and NADPH are proposed from amino acid sequence homologies with Desulfovibrio vulgaris flavodoxin (Dubourdieu, M., and Fox, J.L. (1977) J. Biol. Chem. 252, 1453-1463) and spinach ferredoxin-NADP+ oxidoreductase (Karplus, P.A., Walsh, K.A., and Herriott, J. R. (1984) Biochemistry 23, 6576-6583). Comparison of the deduced amino acid sequences of SiR-FP and NADPH-cytochrome P-450 oxidoreductase (Porter, T. D., and Kasper, C.B. (1985) Proc. Natl. Acad. Sci. U. S.A. 82, 973-977) also showed identities that suggest these two proteins are descended from a common precursor, which contained binding regions for both FMN and FAD.  相似文献   

5.
The flavoprotein moiety of Escherichia coli sulfite reductase (SiR-FP) is homologous to electron transfer proteins such as cytochrome-P450 reductase (CPR) or nitric oxide synthase (NOS). We report on the three-dimensional structure of SiR-FP18, the flavodoxin-like domain of SiR-FP, which has been determined by NMR. In the holoenzyme, this domain plays an important role by shuttling electrons from the FAD to the hemoprotein (the beta-subunit). The structure presented here was determined using distance and torsion angle information in combination with residual dipolar couplings determined in two different alignment media. Several protein-FMN NOEs allowed us to place the prosthetic group in its binding pocket. The structure is well-resolved, and (15)N relaxation data indicate that SiR-FP18 is a compact domain. The binding interface with cytochrome c, a nonphysiological electron acceptor, has been determined using chemical shift mapping. Comparison of the SiR-FP18 structure with the corresponding domains from CPR and NOS shows that the fold of the protein core is highly conserved, but the analysis of the electrostatic surfaces reveals significant differences between the three domains. These observations are placed in the physiological context so they can contribute to the understanding of the electron transfer mechanism in the SiR holoenzyme.  相似文献   

6.
SiR-FP60, the monomeric form of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has been analysed by 31P-NMR spectroscopy. This protein was reported previously as a reliable simplified model for native SiR-FP [Zeghouf, M., Fontecave, M., Macherel, D., & Covès, J. (1998) Biochemistry 37, 6117-6123]. SiR-FP60 was examined in its native form, as a complex with NADP+ and after monoelectronic reduction either with NADPH or dithionite. In these latter cases, the stabilized FMN semiquinone radical offers a natural and internal paramagnetic probe. The paramagnetic effect of added manganese was also studied. In each case, the NMR parameters were extracted from digitalized data by a deconvolution procedure and compared with those obtained previously with cytochrome P450 reductase. Evolution of the NMR parameters and of calculated relaxation rate constants upon biochemical modifications of SiR-FP60 led us to propose that the reactive center is more compact than the one of cytochrome P450 reductase, with the redox components, FMN, FAD and NADPH, in a tighter spatial arrangement, close to the protein surface. This underlies some subtle differences between the two proteins for which a very similar overall structure is likely considering their common genetic origin and common operating cycle.  相似文献   

7.
The hemoprotein component of Salmonella typhimurium sulfite reductase (NADPH) (EC 1.8.1.2) was purified to homogeneity from cysJ266, a mutant strain lacking sulfite reductase flavoprotein. The siroheme- and Fe4S4-containing enzyme was isolated as a monomeric 63-kDa polypeptide and consisted of a mixture of unligated enzyme and a complex with sulfite. Following reduction with 5'-deazaflavin-EDTA and reoxidation, the complex was converted to the uncomplexed, high spin ferri-siroheme state seen previously with Escherichia coli sulfite reductase hemoprotein preparations. The S. typhimurium hemoprotein exhibited catalytic and physical properties identical to the hemoprotein prepared by urea dissociation of E. coli sulfite reductase holoenzyme and was fully competent in reconstituting NADPH-sulfite reductase activity when combined with excess purified sulfite reductase flavoprotein. The DNA sequences of cysI and cysH from S. typhimurium and E. coli B were determined and, together with previously reported data, confirmed the organization of this region as promoter-cysJ-cysI-cysH with all three genes oriented in the same direction from the promoter. Molecular weights deduced for the cysI-encoded sulfite reductase hemoprotein and for the cysH-encoded 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase were approximately 64,000 and 28,000, respectively. Comparison of the deduced amino acid sequence of sulfite reductase hemoprotein with that of spinach nitrite reductase (Back, E., Burkhart, W., Moyer, M., Privalle, L., and Rothstein, S. (1988) Mol. Gen. Genet. 212, 20-26), which also contains siroheme and an Fe4S4 cluster, showed two groups of cysteine-containing sequences with the structures Cys-(X)3-Cys and Cys-(X)5-Cys, which are homologous in the two enzymes and are postulated to provide the ligands of the Fe4S4 cluster in both proteins. From these sequences and from crystallographic (McRee, D. E., Richardson, D. C., Richardson, J. S., and Siegel, L. M. (1986) J. Biol. Chem. 261, 10277-10281) and spectroscopic data in the literature, a model is proposed for the structure of the active center of these two enzymes.  相似文献   

8.
This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.  相似文献   

9.
《Biophysical journal》2022,121(10):1799-1812
Precursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S2? oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur. SiR is a dodecameric oxidoreductase composed of an octameric flavoprotein reductase (SiRFP) and four hemoprotein metalloenzyme oxidases (SiRHPs). SiR performs the electron transfer reduction reaction to produce sulfide from sulfite through coordinated domain movements and subunit interactions without release of partially reduced intermediates. Efforts to understand the electron transfer mechanism responsible for SiR’s efficiency are confounded by structural heterogeneity arising from intrinsically disordered regions throughout its complex, including the flexible linker joining SiRFP’s flavin-binding domains. As a result, high-resolution structures of SiR dodecamer and its subcomplexes are unknown, leaving a gap in the fundamental understanding of how SiR performs this uniquely large-volume electron transfer reaction. Here, we use deuterium labeling, in vitro reconstitution, analytical ultracentrifugation (AUC), small-angle neutron scattering (SANS), and neutron contrast variation (NCV) to observe the relative subunit positions within SiR’s higher-order assembly. AUC and SANS reveal SiR to be a flexible dodecamer and confirm the mismatched SiRFP and SiRHP subunit stoichiometry. NCV shows that the complex is asymmetric, with SiRHP on the periphery of the complex and the centers of mass between SiRFP and SiRHP components over 100 Å apart. SiRFP undergoes compaction upon assembly into SiR’s dodecamer and SiRHP adopts multiple positions in the complex. The resulting map of SiR’s higher-order structure supports a cis/trans mechanism for electron transfer between domains of reductase subunits as well as between tightly bound or transiently interacting reductase and oxidase subunits.  相似文献   

10.
Janick & Siegel [Janick, P. A., & Siegel, L. M. (1982) Biochemistry 21, 3538-3547] showed that the EPR spectrum of the reduced Fe4S4 center (S = 1/2) in fully reduced native ("unligated") Escherichia coli NADPH-sulfite reductase hemoprotein subunit (SiR-HP) is perturbed by interaction with paramagnetic ferrous siroheme (S = 1 or 2) to yield several novel sets of EPR signals: one set with all g values between 2.0 and 2.8, termed "S = 1/2" type, and two sets with the lowest field g value between 4.7 and 5.4, termed "S = 3/2" type. The present study has shown that EPR spectra of fully reduced SiR-HP are nearly quantitatively converted to the classical "g = 1.94" type typical of S = 1/2 Fe4S4 clusters when the heme has been ligated by strong field ligands such as CO, CN-, S2-, and AsO2-, converting the ferroheme to S = 0. However, the exact line shapes and g values of the g = 1.94 differ markedly when different ligands are bound to the heme. Also, optical difference spectra taken between enzyme species in which the heme is kept in the same (Fe2+) oxidation state while the Fe4S4 center is reduced or oxidized show that the optical spectrum of the ligated siroheme is sensitive to the oxidation state of the Fe4S4 cluster. These results indicate that the heme-Fe4S4 interaction of native SiR-HP persists even when the heme Fe is bound to exogenous ligands. We have also found that the g values of the exchange-coupled S = 1/2 and S V 3/2 type signals of native reduced SiR-HP can be significantly shifted by addition of potential weak field heme ligands--halides and formate--or low concentrations of certain chaotropic agents--guanidinium salts and dimethyl sulfoxide--to the fully reduced enzyme. Such agents can also promote interconversion of the S = 1/2 and S = 3/2 type signals. These effects are reversed on removal of the agent. Treatment of reduced SiR-HP with relatively large concentrations of chaotropes, e.g., 60% dimethyl sulfoxide or 2 or 3 M urea, leads to abolition of the S = 1/2 and S = 3/2 EPR signals and their replacement by signals of the g = 1.94 type.  相似文献   

11.
J F Madden  S H Han  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5471-5477
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand.  相似文献   

12.
A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an alpha2beta)gamma(n) (n > or = 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the alpha and beta subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (alpha) and 54 kDa (beta) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6.  相似文献   

13.
A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the ΔSiR1 mutants. While ΔSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.  相似文献   

14.
C Li  H D Peck  A E Przybyla 《Gene》1987,53(2-3):227-234
The structural genes for 3'-phosphoadenylyl sulfate (PAPS) reductase (cysH) and sulfite reductase (alpha and beta subunits; EC 1.8.1.2)(cysI and cysJ) of Escherichia coli K-12 have been cloned by complementation. pCYSI contains two PstI fragments (18.3 and 2.9 kb) which complement cysH-, cysI-, and cysJ- mutants. Subcloning showed that the cysH gene is located on a 1.6-kb ClaI subfragment (pCYSI-3) whereas cysI and most of cysJ are carried on a 3.7-kb ClaI subfragment (pCYSI-5). The PAPS reductase gene is closely linked to the sulfite reductase genes, but its expression is regulated by a unique promoter. The cysI and cysJ genes, on the other hand, are transcribed as an operon and the promoter precedes the cysI gene. Maxicell analysis demonstrated that pCYSI encodes three polypeptides of Mr 27,000, 57,000, and 60,000, in addition to the tetracycline-resistance determinant. The 60- and 57-kDa proteins are most likely the alpha and beta subunits, respectively, of E. coli sulfite reductase while the 27-kDa protein is putatively identified as PAPS reductase. Preliminary data suggest that the alpha and beta subunits of sulfite reductase are encoded by cysI and cysJ, respectively.  相似文献   

15.
Adenylyl sulfate (APS) reductase, the key enzyme of the dissimilatory sulfate respiration, catalyzes the reduction of APS (the activated form of sulfate) to sulfite with release of AMP. A spectroscopic study was carried out with the APS reductase purified from the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus DSM 4304. Combined ultraviolet/visible spectroscopy and low temperature electron paramagnetic resonance (EPR) studies were used in order to characterize the active centers and the reactivity towards AMP and sulfite of this enzyme. The A. fulgidus APS reductase is an iron-sulfur flavoprotein containing two distinct [4Fe-4S] clusters (Centers I and II) very similar to the homologous enzyme from Desulfovibrio gigas. Center I, which has a high redox potential, is reduced by AMP and sulfite, and Center II has a very negative redox potential.  相似文献   

16.
Sulfite reductase (SiR) catalyzes the reduction of sulfite to sulfide in chloroplasts and root plastids using ferredoxin (Fd) as an electron donor. Using purified maize (Zea mays L.) SiR and isoproteins of Fd and Fd-NADP(+) reductase (FNR), we reconstituted illuminated thylakoid membrane- and NADPH-dependent sulfite reduction systems. Fd I and L-FNR were distributed in leaves and Fd III and R-FNR in roots. The stromal concentrations of SiR and Fd I were estimated at 1.2 and 37 microM, respectively. The molar ratio of Fd III to SiR in root plastids was approximately 3:1. Photoreduced Fd I and Fd III showed a comparable ability to donate electrons to SiR. In contrast, when being reduced with NADPH via FNRs, Fd III showed a several-fold higher activity than Fd I. Fd III and R-FNR showed the highest rate of sulfite reduction among all combinations tested. NADP(+) decreased the rate of sulfite reduction in a dose-dependent manner. These results demonstrate that the participation of Fd III and high NADPH/NADP(+) ratio are crucial for non-photosynthetic sulfite reduction. In accordance with this view, a cysteine-auxotrophic Escherichia coli mutant defective for NADPH-dependent SiR was rescued by co-expression of maize SiR with Fd III but not with Fd I.  相似文献   

17.
18.
Diflavin reductases are enzymes which emerged as a gene fusion of ferredoxin (flavodoxin) reductase and flavodoxin. The enzymes of this family tightly bind two flavin cofactors, FAD and FMN, and catalyze transfer of the reducing equivalents from the two-electron donor NADPH to a variety of one-electron acceptors. Cytochrome P450 reductase (P450R), a flavoprotein subunit of sulfite reductase (SiR), and flavoprotein domains of naturally occurring flavocytochrome fusion enzymes like nitric oxide synthases (NOS) and the fatty acid hydroxylase from Bacillus megaterium are some of the enzymes of this family. In this review the results of the last decade of research are summarized, and some earlier results are reevaluated as well. The kinetic mechanism of cytochrome c reduction is analyzed in light of other results on flavoprotein interactions with nucleotides and cytochromes. The roles of the binding sites of the isoalloxazine rings of the flavin cofactors and conformational changes of the protein in electron transfer are discussed. It is proposed that minor conformational changes during catalysis can potentiate properties of the redox centers during the catalytic turnover. A function of the aromatic residue that shields the isoalloxazine ring of the FAD is also proposed.  相似文献   

19.
In addition to the 50-kDa (alpha) and 40-kDa (beta) subunits, an 11-kDa polypeptide has been discovered in highly purified Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. This is in contrast with the hitherto generally accepted alpha 2 beta 2 tetrameric subunit composition. Purification, high-ionic-strength gel-filtration, native electrophoresis and isoelectric focussing do not result in dissociation of the 11-kDa polypeptide from the complex. Densitometric scanning of SDS gels and denaturing gel-filtration indicate a stoichiometric occurrence. A similar 11-kDa polypeptide is present in the desulfoviridin of D. vulgaris oxamicus (Monticello), D. gigas and D. desulfuricans ATCC 27774. We attribute an alpha 2 beta 2 gamma 2 subunit structure to desulfoviridin-type sulfite reductases. N-terminal sequences of the alpha, beta and gamma subunits are reported.  相似文献   

20.
Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号