首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemoprotein component of Salmonella typhimurium sulfite reductase (NADPH) (EC 1.8.1.2) was purified to homogeneity from cysJ266, a mutant strain lacking sulfite reductase flavoprotein. The siroheme- and Fe4S4-containing enzyme was isolated as a monomeric 63-kDa polypeptide and consisted of a mixture of unligated enzyme and a complex with sulfite. Following reduction with 5'-deazaflavin-EDTA and reoxidation, the complex was converted to the uncomplexed, high spin ferri-siroheme state seen previously with Escherichia coli sulfite reductase hemoprotein preparations. The S. typhimurium hemoprotein exhibited catalytic and physical properties identical to the hemoprotein prepared by urea dissociation of E. coli sulfite reductase holoenzyme and was fully competent in reconstituting NADPH-sulfite reductase activity when combined with excess purified sulfite reductase flavoprotein. The DNA sequences of cysI and cysH from S. typhimurium and E. coli B were determined and, together with previously reported data, confirmed the organization of this region as promoter-cysJ-cysI-cysH with all three genes oriented in the same direction from the promoter. Molecular weights deduced for the cysI-encoded sulfite reductase hemoprotein and for the cysH-encoded 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase were approximately 64,000 and 28,000, respectively. Comparison of the deduced amino acid sequence of sulfite reductase hemoprotein with that of spinach nitrite reductase (Back, E., Burkhart, W., Moyer, M., Privalle, L., and Rothstein, S. (1988) Mol. Gen. Genet. 212, 20-26), which also contains siroheme and an Fe4S4 cluster, showed two groups of cysteine-containing sequences with the structures Cys-(X)3-Cys and Cys-(X)5-Cys, which are homologous in the two enzymes and are postulated to provide the ligands of the Fe4S4 cluster in both proteins. From these sequences and from crystallographic (McRee, D. E., Richardson, D. C., Richardson, J. S., and Siegel, L. M. (1986) J. Biol. Chem. 261, 10277-10281) and spectroscopic data in the literature, a model is proposed for the structure of the active center of these two enzymes.  相似文献   

2.
The flavoprotein and hemoprotein components of Escherichia coli B NADPH-sulfite reductase are encoded by cysJ and cysI, respectively. Plasmids containing these two genes overexpressed flavoprotein catalytic activity and apohemoprotein by 13- to 35-fold, but NADPH-sulfite reductase holoenzyme activity was increased only 3-fold. Maximum overexpression of holoenzyme activity was achieved by the inclusion in such plasmids of Salmonella typhimurium cysG, which encodes a uroporphyrinogen III methyltransferase required for the synthesis of siroheme, a cofactor for the hemoprotein. Thus, cofactor deficiency, in this case siroheme, can limit overexpression of a cloned enzyme. Catalytically active holoenzyme accounted for 10% of total soluble protein in a host containing cloned cysJ, cysI, and cysG. A 5.3-kb DNA fragment containing S. typhimurium cysG was sequenced, and the open reading frame corresponding to cysG was identified by subcloning and by identifying plasmid-encoded peptides in maxicells. Comparison with the sequence reported for the E. coli cysG region (J. A. Cole, unpublished data; GenBank sequence ECONIRBC) indicates a gene order of nirB-nirC-cysG in the cloned S. typhimurium fragment. In addition, two open reading frames of unknown identity were found immediately downstream of cysG. One of these contains 11 direct repeats of 33 nucleotides each, which correspond to the consensus amino acid sequence Asp-Asp-Val-Thr-Pro-Pro-Asp-Asp-Ser-Gly-Asp.  相似文献   

3.
Cysteine auxotrophs of Salmonella typhimurium mutated in cysB, cysI or cysJ grew with sulphate as a sulphur source when incubated under a hydrogen/carbon dioxide atmosphere. Yields obtained under these conditions were equivalent to those characteristic of wild-type S. typhimurium. The same mutants failed to grow with sulphate as a sulphur source when incubated aerobically. Auxotrophs mutated in cysA, cysC, cysD, cysE, cysG and cysH required cysteine for growth under both incubation conditions. The results suggest that mutations in cysB (regulation of the several cys operons) and also cysI and cysJ (sulphite reductase activity) can be circumvented during anaerobic growth under hydrogen.  相似文献   

4.
5.
We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4). The third gene has homology to the E. coli cysH gene, a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase (EC 1.8.99.4), but has greater homology to a set of genes found in Arabidopsis thaliana that encode an adenosine-5'-phosphosulfate (APS) reductase. In order to determine the specificity of the R. meliloti reductase, the R. meliloti cysH homolog was histidine tagged and purified, and its specificity was assayed in vitro. Like the A. thaliana reductases, the histidine-tagged R. meliloti cysH gene product appears to favor APS over PAPS as a substrate, with a Km for APS of 3 to 4 microM but a Km for PAPS of >100 microM. In order to determine whether this preference for APS is unique to R. meliloti among members of the family Rhizobiaceae or is more widespread, cell extracts from R. leguminosarum, Rhizobium sp. strain NGR234, Rhizobium fredii (Sinorhizobium fredii), and Agrobacterium tumefaciens were assayed for APS or PAPS reductase activity. Cell extracts from all four species also preferentially reduce APS over PAPS.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. RESULTS: Because the redox enzymes can reduce the disulfide that forms on proteins, wefirst tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coli L-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (cysI and cysJ) and the L-cysteine synthase gene (cysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (cysC or cysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coli L-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell . CONCLUSIONS: In this work, we showed that Grx1 and NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production.  相似文献   

8.
Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions (E. L. Barrett and G. W. Chang, J. Gen. Microbiol., 115:513-516, 1979). Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (less than 0.33%). It was also prevented by the presence of 0.1 mM nitrate, which argues against a strictly biosynthetic role for anaerobic sulfite reduction. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10(-7)M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10(-7)M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADPH and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. Two high-molecular-weight proteins separated by gel filtration (Mr 360,000 and 490,000, respectively) were required for maximal activity with NADH. Indirect evidence, including in vitro complementation experiments with a cysG mutant extract, suggested that the 360,000-Mr component contains siroheme and is the terminal reductase. This component was further purified to near homogeneity and was found to consist of a single subunit of molecular weight 67,500. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.  相似文献   

9.
A gene was cloned from Burkholderia cepacia DBO1 that is homologous with Escherichia coli cysH encoding 3'-phosphoadenylylsulfate (PAPS) reductase. The B. cepacia gene is the most recent addition to a growing list of cysH homologs from a diverse group of sulfate-assimilating bacteria whose products show greater homology to plant 5'-adenylylsulfate (APS) reductase than they do to E. coli CysH. The evidence reported here shows that the cysH from one of the species, Pseudomonas aeruginosa, encodes APS reductase. It is able to complement an E. coli cysH mutant and a cysC mutant, indicating that the enzyme is able to bypass PAPS, synthesized by the cysC product. Insertional knockout mutation of P. aeruginosa cysH produced cysteine auxotrophy, indicating its role in sulfate assimilation. Purified P. aeruginosa CysH expressed as a His-tagged recombinant protein is able to reduce APS, but not PAPS. The enzyme has a specific activity of 5.8 micromol. min(-1). mg of protein(-1) at pH 8.5 and 30 degrees C with thioredoxin supplied as an electron donor. APS reductase activity was detected in several bacterial species from which the novel type of cysH has been cloned, indicating that this enzyme may be widespread. Although an APS reductase from dissimilatory sulfate-reducing bacteria is known, it shows no structural or sequence homology with the assimilatory-type APS reductase reported here. The results suggest that the dissimilatory and assimilatory APS reductases evolved convergently.  相似文献   

10.
The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment.  相似文献   

11.
Escherichia coli sulfite reductase (SiR) is a large and soluble enzyme with an alpha(8)beta(4) quaternary structure. Protein alpha (or sulfite reductase flavoprotein) contains both FAD and FMN, whereas protein beta (or sulfite reductase hemoprotein (SiR-HP)) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is set up to arrange the redox cofactors in a FAD-FMN-Fe(4)S(4)-Heme sequence to make an electron pathway between NADPH and sulfite. Whereas alpha spontaneously polymerizes, we have been able to produce SiR-FP60, a monomeric but fully active truncated version of it, lacking the N-terminal part (Zeghouf, M., Fontecave, M., Macherel, D., and Covès, J. (1998) Biochemistry 37, 6114-6123). Here we report the cloning, overproduction, and characterization of the beta subunit. Pure recombinant SiR-HP behaves as a monomer in solution and is identical to the native protein in all its characteristics. Moreover, we demonstrate that the combination of SiR-FP60 and SiR-HP produces a functional 1:1 complex with tight interactions retaining about 20% of the activity of the native SiR. In addition, fully active SiR can be reconstituted by incubation of the octameric sulfite reductase flavoprotein with recombinant SiR-HP. Titration experiments and spectroscopic properties strongly suggest that the holoenzyme should be described as an alpha(8)beta(8) with equal amounts of alpha and beta subunits and that the alpha(8)beta(4) structure is probably not correct.  相似文献   

12.
13.
In addition to the 50-kDa (alpha) and 40-kDa (beta) subunits, an 11-kDa polypeptide has been discovered in highly purified Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. This is in contrast with the hitherto generally accepted alpha 2 beta 2 tetrameric subunit composition. Purification, high-ionic-strength gel-filtration, native electrophoresis and isoelectric focussing do not result in dissociation of the 11-kDa polypeptide from the complex. Densitometric scanning of SDS gels and denaturing gel-filtration indicate a stoichiometric occurrence. A similar 11-kDa polypeptide is present in the desulfoviridin of D. vulgaris oxamicus (Monticello), D. gigas and D. desulfuricans ATCC 27774. We attribute an alpha 2 beta 2 gamma 2 subunit structure to desulfoviridin-type sulfite reductases. N-terminal sequences of the alpha, beta and gamma subunits are reported.  相似文献   

14.
The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.  相似文献   

15.
Nitrate reductase, released and purified from membrane fractions of Escherichia coli, is composed of three subunits. Formation of the enzyme depends on induction of the nar operon, narGHJI, which is composed of four open reading frames (ORF). Previous studies established that the first two genes in the operon narG and narH encode the alpha and beta subunits, respectively, while formation of the gamma subunit, cytochrome bNR, depends on expression of the promoter distal genes. The narJ and narI genes were subcloned separately into plasmids where each was under the control of the nar promoter. Expression of these plasmids in a mutant which forms only alpha and beta subunits revealed that expression of the narI gene is sufficient to restore normal levels of cytochrome bNR, but expression of both genes is required for assembly of fully active, membrane-bound nitrate reductase. The amino acid composition, the N-terminal sequence, and the sequence of cyanogen bromide fragments derived from the isolated gamma subunit corresponds to that expected for a protein produced by the narI ORF. A protein corresponding to the narJ ORF did not appear to be associated with the purified nitrate reductase complex or with the complex immunoprecipitated from Triton X-100-solubilized membrane preparations. We conclude that narI encodes the gamma subunit (cytochrome bNR) and that while the product of the narJ gene is required for assembly of fully active membrane-bound enzyme it is not tightly associated with the active enzyme.  相似文献   

16.
The nitrile hydratase (NHase) of Pseudomonas chlororaphis B23, which is composed of two subunits, alpha and beta, catalyzes the hydration of nitrile compounds to the corresponding amides. The NHase gene of strain B23 was cloned into Escherichia coli by the DNA-probing method with the NHase gene of Rhodococcus sp. strain N-774 as the hybridization probe. Nucleotide sequencing revealed that an amidase showing significant similarity to the amidase of Rhodococcus sp. strain N-774 was also coded by the region just upstream of the subunit alpha-coding sequence. In addition to these three proteins, two open reading frames, P47K and OrfE, were found just downstream of the coding region of subunit beta. The direction and close locations to each other of these open reading frames encoding five proteins (amidase, subunits alpha and beta, P47K, and OrfE, in that order) suggested that these genes were cotranscribed by a single mRNA. Plasmid pPCN4, in which a 6.2-kb sequence covering the region coding for these proteins is placed under control of the lac promoter, directed overproduction of enzymatically active NHase and amidase in response to addition of isopropyl-beta-D-thiogalactopyranoside. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of subunits alpha and beta of NHase was about 10% of the total cellular proteins and that an additional 38-kDa protein probably encoded by the region upstream of the amidase gene was also produced in a large amount. The 38-kDa protein, as well as P47K and OrfE, appeared to be important for efficient expression of NHase activity in E. coli cells, because plasmids containing the NHase and amidase genes but lacking the region coding for the 38-kDa protein or the region coding for P47K and OrfE failed to express efficient NHase activity.  相似文献   

17.
A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an alpha2beta)gamma(n) (n > or = 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the alpha and beta subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (alpha) and 54 kDa (beta) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6.  相似文献   

18.
19.
The cysCDHIJ gene region at 59 min and the cysG gene at 74 min on the chromosome of Escherichia coli K-12 were cloned. The ability of these cloned genes to complement mutants was analyzed and their restriction maps were determined. The following results were obtained. First, the cysCDHIJ regulon could be separated into cysCD and cysHIJ regions. Second, the cysG gene was quite different from the cysI and cysJ genes.  相似文献   

20.
Inorganic sulfate (SO42-, S+VI) is reduced in vivo to sulfite (SO32-, S+IV) via phosphoadenylylsulfate (PAPS) reductase. Escherichia coli lacking glutathione reductase and glutaredoxins (gor-grxA-grxB-grxC-) barely grows on sulfate. We found that incubation of PAPS reductase with oxidized glutathione leads to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the active site Cys-239. A newly developed method based on thiol-specific fluorescent alkylation and gel electrophoresis showed that glutathionylated PAPS reductase is reduced by glutaredoxins via a monothiol mechanism. This glutathionylated species was also observed in poorly growing gor-grxA-grxB-grxC- cells expressing inactive glutaredoxin 2 (Grx2) C9S/C12S. However, it was absent in better growing cells expressing monothiol Grx2 C12S or wild type Grx2. Reversible glutathionylation may thus regulate the activity of PAPS reductase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号