首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Gene expression in E. coli after treatment with streptozotocin   总被引:2,自引:0,他引:2  
Gene induction by the methylating agents streptozotocin (STZ), N-methyl-N-nitrosourea (MNU), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was evaluated in E. coli fusion mutants. These mutants have fusions of the lac operon to genes induced by treatment with sublethal levels of alkylating agents and were previously selected from random insertions of the Mu-dl (Apr lac) phage by screening for induction of beta-galactosidase activity in the presence of methyl methanesulfonate or MNNG. The results demonstrate that STZ differs from MNNG and MNU in failing to induce aidC expression. Further, expression of aidC after exposure to MNU and MNNG occurs only in nonaerated cultures; aeration blocks the induction. Induction of aidD, alkA, aidB, and sfiA expression occurs with all 3 agents although at markedly lower concentrations of MNNG and STZ compared to MNU. alkA and to a lesser extent aidD mutants of E. coli strains were more sensitive to these agents, while no differences were evident between wild-type and aidB or aidC fusion mutants.  相似文献   

2.
Several alkylation-inducible genes have been identified by construction of Mu-d1 (Apr lac) fusions to genes whose expression is increased in response to alkylation treatment, but not UV treatment. We have examined the induction of 4 different alkylation-inducible genes by treatment with a variety of methylating and ethylating agents, and a propylating agent. We have compared the induction of the alkylation-inducible genes with the induction of the sulA gene, which is a component of the SOS response to DNA damage. We find that the Ada-regulated adaptive response genes (ada-alkB, alkA and aidB) are induced primarily in response to methylation treatment. The ada-independent aidC gene is induced upon treatment with agents that alkylate predominantly by SN1 nucleophilic attack. aidC induction occurs only when cells are not aerated during treatment. The SOS response, as indicated by sulA induction, is strongly induced by all types of alkylating agents used.  相似文献   

3.
4.
Mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were strongly enhanced in the presence of o-vanillin in E. coli B. The enhancement was also observed in uvrA, umuC, recA, polA, or alkB mutants. This effect was lower in an alkA mutant, but was restored in an alkA umuC double mutant. By contrast, the enhancing effect was almost blocked in an ada and ada umuC double mutant. It was necessary to add simultaneously MNNG and o-vanillin to the growth medium. Further investigations were conducted on the induction of ada and umuC genes using ada'-lacZ' and umuC'-lacZ' plasmids. o-Vanillin suppressed the induction of the ada gene by MNNG treatment, but not that of the umuC gene. In fact expression of the umuC gene was induced by lower concentrations of MNNG in the presence of o-vanillin. The results suggest that o-vanillin inhibits induction of the adaptive response, and consequently, the MNNG-induced mutation frequency is increased due to unrepaired O6-methylguanine.  相似文献   

5.
Methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and methyl methane sulfonate (MMS) produce a wide variety of N- and O-methylated bases in DNA, some of which can block replication fork progression. Homologous recombination is a mechanism by which chromosome replication can proceed despite the presence of lesions. The two major recombination pathways, RecBCD and RecFOR, which repair double-strand breaks (DSBs) and single-strand gaps respectively, are needed to protect against toxicity with the RecBCD system being more important. We find that recombination-deficient cell lines, such as recBCD recF, and ruvC recG, are as sensitive to the cytotoxic effects of MMS and MNNG as the most base excision repair (BER)-deficient (alkA tag) isogenic mutant strain. Recombination and BER-deficient double mutants (alkA tag recBCD) were more sensitive to MNNG and MMS than the single mutants suggesting that homologous recombination and BER play essential independent roles. Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria. Our results suggest that the mechanism of cytotoxicity by alkylating agents includes the necessity for homologous recombination to repair DSBs and single-strand gaps produced by DNA replication at blocking lesions or single-strand nicks resulting from AP-endonuclease action.  相似文献   

6.
It is known that UV, X-rays, MMC and MMS are not mutagenic for H. influenzae, whereas HZ, EMS and MNNG are potent mutagens for this bacterium. All of these agents, however, are known to be both mutagenic and able to induce prophage in E. coli. We report here that all the agents except HZ induce prophage in H. influenzae, and EMS even induces in the recombination-defective recl mutant, which is non-inducible by UV, MMC, MNNG and MMS. MMS did not cause single-strand breaks or gaps in DNA synthesized after treatment of H. influenzae, but EMS and MNNG produced them. EMS caused more breaks in DNA synthesized before treatment than in that synthesized after treatment. On the other hand we did observe such breaks or gaps induced in E. coli in DNA synthesized posttreatment by EMS as well as by MMS and MNNG, at comparable survival levels.  相似文献   

7.
8.
Bacillus subtilis ada operon encodes two DNA alkyltransferases.   总被引:11,自引:4,他引:7       下载免费PDF全文
  相似文献   

9.
Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene.  相似文献   

10.
Roles of two types of O6-methylguanine-DNA methyltransferases in DNA repair   总被引:4,自引:0,他引:4  
Escherichia coli possesses 2 types of O6-methylguanine-DNA methyltransferases, one inducible and the other constitutive. These enzymes are coded by the ada and the ogt genes, respectively. Using a synthetic ogt-specific probe, we mapped ogt at 29.4 min, near the 5'-flanking region of the nirR gene, on the E. coli chromosome. To elucidate the roles of the 2 types of methyltransferases in DNA repair, we constructed mutant strains which lack either one or both of the genes. In either the ada+ or the ada- background, the ogt mutation had no effect on cell survival after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. On the other hand, ada- ogt- cells were more prone to mutation as compared to the ada- ogt+ cells exposed to MNNG. The frequency of spontaneous mutation of cells defective in either one or both of the genes was the same, however, the introduction of the ogt+ plasmid into the cells produced a 2-3-fold decrease in the frequency of spontaneous mutation. O6-Methylguanine-DNA methyltransferases appear to eliminate premutagenic DNA lesions not only from cells exposed to alkylating agents but also from those grown in the absence of the agents.  相似文献   

11.
The lethal and mutagenic effects of 7 alkylating agents: N-nitroso-N-methylurea (NMU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), nitrogen mustard (HN2), mitomycin C (MC), bifunctional acridine mustard (AM)--and of cyanate (KNCO) on heat inducible lambda cI857 prophage were studied. After treatment of lysogenic cells with mutagens, prophage was heat-induced either immediately or after 90 min incubation in nutrient broth and c mutants forming clear plaques at 32 degrees C were scored. NMU (0.02 M) when immediately induced with heat, induces c mutants very efficiently (maximal yield 10%) not only in the wild-type cells but also in repair-deficient mutants recA13, lexA102, uvrA6 umuC36, recF143, xthA9, polA1, uvrD3 and uvrD502. These data show that NMU-induced mutations are fixed as replication errors due to mispairing modified bases. After delayed heat induction, the prophage survival enhances and the frequency of c mutations declines considerably in host cells of all repair genotypes tested. Carbamoylation is not involved in the mutagenic action of NMU, because KNCO (0.02 M) has a very slight lethal effect and does not induce mutations. MNNG (100 micrograms/ml) and EMS (0.1 M) also induce mutations by replicative mechanism, because maximal yield of c mutations does not depend on RecA+ and is about 15 and 2%, respectively. MMS is a mutagen of the repair type, since its mutagenic action is suppressed by recA mutation of the host. NH2 only inactivates prophage, but does not induce mutations. MC (50 micrograms/ml) and AM (150 micrograms/ml) induce mutations rather inefficiently (the maximal yield 0.1 and 0.3%, respectively) both in recA+ and recA- hosts. The mutagenic action of these agents is probably due to intercalation.  相似文献   

12.
Cadmium and mercury ions inhibited the promotion of ada and alkA gene expression in the adaptive process induced by methylating agents such as N-methyl-N-nitrosourea (MNU), methyl methanesulfonate (MMS) and methyl iodide in Escherichia coli. In fact, the induction of O6-methylguanine-DNA methyl-transferase (MGTase) by MNU was suppressed in E. coli in the presence of these metal ions. These ions potentiated mutagenesis induced by methylating agents such as MNU and MMS, but not that induced by ethylating agents, UV irradiation, or N4-aminocytidine. These comutagenic effects were observed in wild-type and umuC36 strains of E. coli but not in the ada-5 strain, which is unable to induce the adaptive response. These results suggest that the comutagenic effects of Cd2+ and Hg2+ are due to inhibition of ada and alkA gene expression promoted by methylated MGTase.  相似文献   

13.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

14.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

15.
The isolation and characterisation of mutants of Aspergillus nidulans showing resistance to MNNG is described. Such isolates were stable through prolonged subculture in the absence of the selective agent, and resistance segregated as an allele of a single gene in meiotic and mitotic analysis. MNNG-resistant strains showed an increase in resistance to EMS and UV irradiation but no cross-resistance to MMS was detected. Possible mechanisms of resistance to alkylating agents are discussed.  相似文献   

16.
The in vivo frequency of mutants resulting from mutation at the hprt locus in human T-lymphocytes was determined with a cloning assay. T-lymphocytes were obtained from 14 individuals diagnosed with schizophrenia and 5 controls. No significant difference in mutant frequency was observed between the 2 groups. In addition, DNA-repair capacity was measured with the unscheduled DNA synthesis technique in lymphocytes from 7 individuals diagnosed with schizophrenia and 7 controls. Repair capacity was determined following treatment with MMS, MNNG, and 20 J/m2 ultraviolet light. No significant differences in DNA repair were observed between the patient and control groups in response to any of the 3 DNA-damaging agents. These results argue against differences between normal and schizophrenic individuals with respect to in vivo mutant frequency or their capacity to repair DNA lesions induced by MMS, MNNG, or ultraviolet radiation.  相似文献   

17.
The sensitivity of a cytogenetic assay, as expressed by the in vitro induction of micronuclei (MN), was compared to the in vitro induction of sister-chromatid exchanges (SCEs). Chinese hamster lung (V79) cells were exposed to 3 known alkylating agents: methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and to 5 newly synthesized naphthofurans: 2-nitro-7-methoxynaphtho[2,1-b]furan (A), 2-nitro-8-methoxynaphtho[2,1-b]furan (B), 2-nitronaphtho[2,1-b]furan (C), 2-nitro-7-bromonaphtho[2,1-b]furan (D) and 7-methoxynaphtho[2,1-b]furan (E). The induction of MN only was also analysed after exposure of the cells to 4 alcohols: ethanol, methanol, butanol and propanol. The lowest dose at which a significant effect could be observed was determined. In both assays, MNNG, MMS and EMS were equally active with the following order of potency: MNNG greater than MMS greater than EMS, the latter being a very weak inducer of MN and SCE. Compounds A and B were also very effective in both assays. Compound C was a more active inducer of SCE than MN. Compounds D and E were not active in either assay. None of the 4 alcohols induced MN. Our results are compared with the previously published data on in vitro and in vivo induction of SCE and MN. We conclude that the MN in vitro assay which detects clastogens as well as agents affecting the spindle apparatus, is a good indicator of genotoxicity, though slightly less sensitive than the in vitro SCE test. It could provide a rapid, simple and inexpensive complementary short-term test for the evaluation of potentially mutagenic chemicals.  相似文献   

18.
A high frequency of morphogenetic mutants of Dictyostelium discoideum can be induced by treatment with MNNG under conditions which result in relatively low cell killing. Six temperature-sensitive growth mutants induced by this treatment were isolated by replica plating. Among these, five showed spontaneous reversion rates of 10(-4) to 10(-5). The mutagenic activity of ems, measured for the induction of both morphogenetic and temperature-sensitive mutants, was weaker than that of MNNG and UV radiation. High frequencies of morphogenetic mutants were obtained only with doses of UV irradiation that resulted in high killing of cells or spores. Caffeine, at concentrations that slightly decreased the growth rate of amoebae in axenic medium, induced morphogenetic defects and also enhanced the mutagenic effect of UV irradiation. However, all the aggregateless clones derived from caffeine treatment that were studied reverted to the wild-type phenotype after a variable number of clonal re-isolations.  相似文献   

19.
H Kataoka  J Hall    P Karran 《The EMBO journal》1986,5(12):3195-3200
Dual expression vectors derived from pSV2gpt and encoding all or part of the Escherichia coli ada+ gene have been constructed. Following transformation into an E. coli ada strain or transfection and stable integration into the genome of Chinese hamster ovary (CHO) cells, plasmid vectors containing the whole ada+ gene conferred resistance to both killing and mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Thus, the bacterial DNA repair gene was functionally expressed in the mammalian cells. Plasmids containing an N-terminal fragment of the ada+ gene which encoded only one of the two methyltransferase activities of the Ada protein did not significantly protect E. coli or CHO cells against MNNG. These results are consistent with the central role of the intact ada+ gene in controlling the adaptive response to alkylating agents in E. coli. However, the data further suggest that some alkylation lesions in DNA, such as O6-methylguanine, may exert partly different biological effects in E. coli and mammalian cells.  相似文献   

20.
J Pierre  J Laval 《Gene》1986,43(1-2):139-146
The 3-methyladenine-DNA glycosylase (m3ADG) excises 3-methyladenine (m3A) residues formed in DNA after treatment with alkylating agents. In Escherichia coli, the repair of this type of damage depends on the products of the genes tagA and/or alkA, which code for m3ADG I (20 kDa) and II (30 kDa), respectively. The tagA- and alkA--single mutants are sensitive to alkylating agents, the double mutant much more so. We have cloned two genes of Micrococcus luteus that can partly substitute the function of the E. coli tagA- and alkA- genes. An M. luteus genome bank was made by shotgun cloning of EcoRI + BamHI-digested DNA into pBR322. Two hybrid plasmids were identified that confer methylmethane sulfonate (MMS) resistance to the tagA- ada+ mutant and a capacity to reactivate MMS-treated bacteriophage lambda. Each hybrid plasmid directed the synthesis of 21-kDa m3ADG in E. coli tagA- ada-, which were not inhibited by 4 mM m3A. However, the restriction maps of the two cloned genes were different, and they showed no sequence homology as judged by the lack of cross hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号