首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ESCHERICHIA COLI Gene Induction by Alkylation Treatment   总被引:21,自引:1,他引:20       下载免费PDF全文
Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased beta-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N' -nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes.  相似文献   

2.
Several alkylation-inducible genes have been identified by construction of Mu-d1 (Apr lac) fusions to genes whose expression is increased in response to alkylation treatment, but not UV treatment. We have examined the induction of 4 different alkylation-inducible genes by treatment with a variety of methylating and ethylating agents, and a propylating agent. We have compared the induction of the alkylation-inducible genes with the induction of the sulA gene, which is a component of the SOS response to DNA damage. We find that the Ada-regulated adaptive response genes (ada-alkB, alkA and aidB) are induced primarily in response to methylation treatment. The ada-independent aidC gene is induced upon treatment with agents that alkylate predominantly by SN1 nucleophilic attack. aidC induction occurs only when cells are not aerated during treatment. The SOS response, as indicated by sulA induction, is strongly induced by all types of alkylating agents used.  相似文献   

3.
4.
Cadmium and mercury ions inhibited the promotion of ada and alkA gene expression in the adaptive process induced by methylating agents such as N-methyl-N-nitrosourea (MNU), methyl methanesulfonate (MMS) and methyl iodide in Escherichia coli. In fact, the induction of O6-methylguanine-DNA methyl-transferase (MGTase) by MNU was suppressed in E. coli in the presence of these metal ions. These ions potentiated mutagenesis induced by methylating agents such as MNU and MMS, but not that induced by ethylating agents, UV irradiation, or N4-aminocytidine. These comutagenic effects were observed in wild-type and umuC36 strains of E. coli but not in the ada-5 strain, which is unable to induce the adaptive response. These results suggest that the comutagenic effects of Cd2+ and Hg2+ are due to inhibition of ada and alkA gene expression promoted by methylated MGTase.  相似文献   

5.
Mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were strongly enhanced in the presence of o-vanillin in E. coli B. The enhancement was also observed in uvrA, umuC, recA, polA, or alkB mutants. This effect was lower in an alkA mutant, but was restored in an alkA umuC double mutant. By contrast, the enhancing effect was almost blocked in an ada and ada umuC double mutant. It was necessary to add simultaneously MNNG and o-vanillin to the growth medium. Further investigations were conducted on the induction of ada and umuC genes using ada'-lacZ' and umuC'-lacZ' plasmids. o-Vanillin suppressed the induction of the ada gene by MNNG treatment, but not that of the umuC gene. In fact expression of the umuC gene was induced by lower concentrations of MNNG in the presence of o-vanillin. The results suggest that o-vanillin inhibits induction of the adaptive response, and consequently, the MNNG-induced mutation frequency is increased due to unrepaired O6-methylguanine.  相似文献   

6.
DNA repair mechanisms affecting cytotoxicity by streptozotocin in E. coli   总被引:2,自引:0,他引:2  
Mechanisms underlying cytotoxicity by the monofunctional nitrosourea streptozotocin (STZ) were evaluated in DNA repair-deficient E. coli mutants. Strains not proficient in recombinational repair which lack either RecA protein or RecBC gene products were highly sensitive to STZ. In contrast, cells that constitutively synthesize RecA protein and cannot initiate SOS repair mechanisms because of uncleavable LexA repressor (recAo98 lexA3) were resistant to this drug compared to a lexA3 strain. Further, E. coli cells lacking both 3-methyladenine DNA glycosylases I (tag) and II (alkA) also were highly sensitive to STZ. DNA synthesis was most inhibited by STZ in recA and alkA tag E. coli mutants, but was suppressed less markedly in wild-type and recBC cells. DNA degradation was most extensive in recA E. coli after STZ treatment, while comparable in recBC, alkA tag, and wild-type cells. Although increased single-stranded DNA breaks were present after STZ treatment in recA and recBC mutants compared to the wild type, no significant increase in DNA single-stranded breaks was noted in alkA tag E. coli. Further, DNA breaks in recBC cells were repaired, while those present in recA cells were not. These findings establish the critical importance of both recombinational repair and 3-methyladenine DNA glycosylase in ameliorating cytotoxic effects and DNA damage caused by STZ in E. coli.  相似文献   

7.
Escherichia coli alkA mutants, which are deficient for an inducible DNA glycosylase, 3-methyladenine-DNA glycosylase II, are sensitive to mutagenesis by low doses of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). As many as 90% of the alkA-dependent mutations induced by MNNG are also umuC+ dependent and thus are due to DNA lesions that are substrates for the mutagenic functions of the SOS response. A great number of these mutations are base substitutions at A . T sites, particularly A . T transversions. We discuss which DNA lesions may be responsible for these mutations. Our results show that the induction of 3-methyladenine-DNA glycosylase II, which occurs as part of the adaptive response to alkylating agents such as MNNG, significantly reduces the mutagenicity as well as the lethality of alkylation damage.  相似文献   

8.
The role of nucleotide excision repair and 3-methyladenine DNA glycosylases in removing cytotoxic lesions induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Salmonella typhimurium and Escherichia coli cells was examined. Compared to the E. coli wild-type strain, the S. typhimurium wild-type strain was more sensitive to the same dose of MNNG. Nucleotide excision repair in both bacterial species does not contribute significantly to the survival after MNNG treatment, indicating that the observed differences in survival between S. typhimurium and E. coli should be attributed to DNA-repair systems other than nucleotide excision repair. The survival of the E. coli alkA mutant strain is seriously affected by the lack of 3-methyladenine DNA glycosylase II, accentuating the importance of this DNA-repair enzyme in protecting E. coli cells against the lethal effects of methylating agents. Following indications from our experiments, the existence of an alkA gene analogue in S. typhimurium has been questioned. Dot-blot hybridisation, using the E. coli alkA gene as a probe, was performed, and such a nucleotide sequence was not detected on S. typhimurium genomic DNA. The existence of constitutive 3-methyladenine DNA glycosylase, analogous to the E. coli Tag gene product in S. typhimurium cells, suggested by the results is discussed.  相似文献   

9.
The expression of genes belonging to the Ada regulon of Escherichia coli under the action of mono- and bifunctional alkylating agents--high-efficiency antitumor HMM, ACNU, and BCNU preparations--was studied. The functional specificity of the alkA, alkB, and aidB1 genes concerning both the structure and volume of DNA alkylation and the specificity of cell preadaptation was revealed. Additional experimental evidence for the role of the aidB1 gene as a unique "hazard gene", a component of the E. coli ada operon, was obtained. A phenomenon of positive interference between alternative SOS and Ada responses was observed for the first time upon gene expression.  相似文献   

10.
A broad-host-range plasmid containing a fusion of the alkA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria--33 species belonging to 19 genera--to study the induction of expression of the alkA gene by alkylating agents. The bacteria included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae, and Azotobacteraceae. Results obtained show that all bacteria tested, except Aeromonas hydrophila, Agrobacterium tumefaciens, Hafnia alvei, Rhizobium meliloti, Salmonella enteritidis, Xanthomonas campestris, and those of the genus Rhodobacter, are able to induce the alkA gene of E. coli in the presence of N-methyl-N'-nitro-N-nitrosoguanidine. All these data indicate that the adaptive response to alkylating agents is present in bacterial species of several families and that the Ada box sequence must be widely conserved.  相似文献   

11.
12.
13.
Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene.  相似文献   

14.
The induction of SOS and adaptive responses by alkylating agents was studied in Escherichia coli mutants tagA and alkA deficient in 3-methyladenine-DNA glycosylase activities. The SOS response was measured using an sfiA::lacZ operon fusion. The sfiA operon, in the double mutant tagA alkA, is induced at 5-50-fold lower concentrations of all tested methylating and ethylating compounds, as compared to the wild-type strain. In all cases, the tagA mutation, which inactivates the constitutive and specific 3-alkyladenine-DNA glycosylase I (TagI), sensitizes the strain to the SOS response. The sensitization effect of alkA mutation, which inactivates the inducible 3-alkyladenine-DNA glycosylase II (TagII), is observed under conditions which allow the induction of the adaptive response. We conclude that the persistence of 3-methyladenine and 3-ethyladenine residues in DNA most likely leads to the induction of the SOS functions. In contrast, the adaptive response, evaluated by O6-methylguanine-DNA methyltransferase activity in cell extracts, was not affected by either tagA or alkA mutations. The results suggest that the SOS and adaptive responses use different alkylation products as an inducing "signal". However, adaptation protein TagII inhibits the induction of the SOS response to some extent, due to its action at the level of signal production. Finally, we provide conditions to improve short-term bacterial tests for the detection of genotoxic alkylating agents.  相似文献   

15.
16.
17.
Nucleotide sequence of a DNA fragment containing the alkA gene and its control region has been determined using a chemical method. Only one open reading frame responsible for 3-methyladenine DNA glycosylase II was found. The hypothetical polypeptide deduced from the DNA sequence, with a molecular weight of 31,400, has an amino-terminal sequence and total amino acid composition identical to that of purified 3-methyladenine DNA glycosylase II. We constructed hybrid plasmids carrying an alkA'-lacZ' fusion, with the proper control region for alkA expression. A hybrid polypeptide with beta-galactosidase activity was formed when lac mutant cells harboring such plasmids were incubated with low doses of N-methyl-N'-nitro-N-nitrosoguanidine or methylmethane sulfonate. Other DNA-damaging agents, such as ethylmethane sulfonate, nalidixic acid, and ultraviolet light did not induce the enzyme activity. The induction was controlled by the ada and adc, but not by the recA and lexA genes.  相似文献   

18.
Methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and methyl methane sulfonate (MMS) produce a wide variety of N- and O-methylated bases in DNA, some of which can block replication fork progression. Homologous recombination is a mechanism by which chromosome replication can proceed despite the presence of lesions. The two major recombination pathways, RecBCD and RecFOR, which repair double-strand breaks (DSBs) and single-strand gaps respectively, are needed to protect against toxicity with the RecBCD system being more important. We find that recombination-deficient cell lines, such as recBCD recF, and ruvC recG, are as sensitive to the cytotoxic effects of MMS and MNNG as the most base excision repair (BER)-deficient (alkA tag) isogenic mutant strain. Recombination and BER-deficient double mutants (alkA tag recBCD) were more sensitive to MNNG and MMS than the single mutants suggesting that homologous recombination and BER play essential independent roles. Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria. Our results suggest that the mechanism of cytotoxicity by alkylating agents includes the necessity for homologous recombination to repair DSBs and single-strand gaps produced by DNA replication at blocking lesions or single-strand nicks resulting from AP-endonuclease action.  相似文献   

19.
Noninstructive DNA damage in Escherichia coli induces SOS functions hypothesized to be required for mutagenesis and translesion DNA synthesis at noncoding DNA lesions. We have recently demonstrated that in E. coli cells incapable of SOS induction, prior UV-irradiation nevertheless strongly enhances mutagenesis at a noninstructive lesion borne on M13 DNA. Here, we address the question whether this effect, named UVM for UV modulation of mutagenesis, can be induced by other DNA damaging agents. Exponentially growing δrecA cells were pretreated with alkylating agents before transfection with M13 single-stranded DNA bearing a site-specific ethenocytosine residue. Effect of cell pretreatment on survival of the transfected DNA was determined as transfection efficiency. Mutagenesis at the ethenocytosine site in pretreated or untreated cells was analyzed by multiplex DNA sequencing, a phenotype-independent technology. Our data show that 1-methyl-3-nitro-1-nitrosoguanidine, N-nitroso-N-methylurea and dimethylsulfate, but not methyl iodide, are potent inducers of UVM. Because alkylating agents induce the adaptive response to defend against DNA alkylation, we asked if the genes constituting the adaptive response are required for UVM. Our data show that MNNG induction of UVM is independent of ada, alkA and alkB genes and define UVM as an inducible mutagenic phenomenon distinct from the E. coli adaptive and SOS responses.  相似文献   

20.
S Boiteux  O Huisman    J Laval 《The EMBO journal》1984,3(11):2569-2573
The induction by methylating agents of the SOS function sfiA was measured by means of a sfiA::lac operon fusion in Escherichia coli mutants defective in alkylation repair. The sfiA operon was turned on at a 10-fold lower concentration of methylmethane sulfonate or dimethyl sulfate in tagA strains, lacking specific 3-methyladenine-DNA glycosylase, than in wild-type strains. In contrast, the induction of sfiA by u.v. light was not affected by a tagA mutation. We confirm that tagA strains specifically accumulate 3-methyladenine in their DNA. We conclude that the persistence of 3-methyladenine in E. coli DNA most likely induces the SOS functions. Results on in vitro DNA synthesis further suggest that this induction is due to an unscheduled arrest of DNA synthesis at this lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号