首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first direct equilibrium dialysis titration of the blood coagulation protein bovine prothrombin fragment 1 with Mg(II) is presented. Fragment 1 has fewer thermodynamic binding sites for Mg(II) than Ca(II), less overall binding affinity, and significantly less cooperativity. Several nonlinear curve fitting models were tested for describing the binding of fragment 1 with Mg(II), Ca(II), and mixed metal binding data. The Mg(II) data is represented by essentially five equivalent, noninteracting sites; for Ca(II), a model with three tight, cooperative sites and four "loose", equal affinity, noninteracting sites provides the best model. Based on the reported equilibrium dialysis data and in conjunction with other experimental data, a model for the binding of Ca(II) and Mg(II) to bovine prothrombin fragment 1 is proposed. The key difference between the binding of these divalent ions is that Ca(II) apparently causes a specific conformational change reflected by the cooperativity observed in the Ca(II) titration. The binding of Ca(II) ions to the three tight, cooperative sites establishes a conformation that is essential for phospholipid X Ca(II) X protein binding. The filling of the loose sites with Ca(II) ions leads to charge reduction and subsequent phospholipid X Ca(II) X protein complex interaction. Binding of Mg(II) to bovine prothrombin fragment 1 does not yield a complex with the necessary phospholipid-binding conformation. However, Mg(II) is apparently capable of stabilizing the Ca(II) conformation as is observed in the mixed metal ion binding data and the synergism in thrombin formation.  相似文献   

2.
Metal ions play a crucial role in the conformation and splicing activity of Group II introns. Results from 2-aminopurine fluorescence and solution NMR studies suggest that metal ion binding within the branch site region of native D6 of the Group II intron is specific for alkaline earth metal ions and involves inner sphere coordination. Although Mg(2+) and Ca(2+) still bind to a mutant stem loop sequence from which the internal loop had been deleted, ion binding to the mutant RNA results in decreased, rather than increased, exposure of the branch site residue to solvent. These data further support the role of the internal loop in defining branch site conformation of the Group II intron. The specific bound Mg(2+) may play a bivalent role: facilitates the extrahelical conformation of the branch site and has the potential to act as a Lewis acid during splicing.  相似文献   

3.
Bovine calmodulin, spin-labeled at tyrosine-99, has been utilized in electron paramagnetic resonance (EPR) studies to investigate calmodulin interactions with Ca(II), Cd(II), and Mg(II). The addition of either Ca(II) or Cd(II) to apo-calmodulin results in a complex capable of activating target enzymes, such as 3', 5'-cyclic nucleotide phosphodiesterase (J. M. Buccigross, C. L. O'Donnell, and D. J. Nelson, Biochem. J. 235 677 [1986]), while Mg(II) is known to be incapable of activating calmodulin toward any of its target enzymes. Additions of Ca(II) and Cd(II) to spin-labeled apo-calmodulin gave rise to very similar changes in the EPR spectrum of the bound label, consistent with a dramatic decrease in the mobility of the nitroxide spin-label covalently attached to tyrosine-99. Addition of Mg(II) to spin-labeled apo-calmodulin caused no change in the EPR spectrum of the bound label. Thus, the conformational changes induced by Ca(II) and Cd(II) ion binding to calmodulin, which lead to decreased tyrosine-99 spin label mobility, are clearly not occurring when Mg(II) ion binds. These results are consistent with the results of other spectroscopic studies, which indicate that "activating" metal ions, such as Ca(II) and Cd(II), produce calmodulin conformers that are different from those produced by "inactivating" metal ions, such as Mg(II).  相似文献   

4.
The conformation of the cyclic peptide Ac-Cys-Leu-Gla-Gla-Pro-Cys-NHMe, representing the 18-23 disulfide loop of bovine prothrombin, was studied by energy minimization with the ECEPP (Empirical Conformational Energy Program for Peptides) algorithm. Parameters for charge and geometry for the gamma-carboxyglutamic acid (Gla) residue were obtained for inclusion in the ECEPP data set. Construction of the 18-23 cyclic peptide, for which no crystal structure is available, was carried out by using a scheme that took advantage of the constraints imposed by the requirement of disulfide ring closure and utilized known low-energy structures of single residues and dipeptides. Both cis and trans isomers about the Gla 21-Pro 22 peptide bond were considered. The lowest-energy conformation found for the isolated 18-23 cyclic peptide with arbitrary reduction of the charge on the Gla residues (to simulate hydration roughly) is a trans form, differing in energy by 11 kcal-mol-1 from the lowest-energy cis form. However, when the energy calculation includes one model Ca2+ ion, X2+, introduced at a fixed distance of 2.3 A from a single oxygen atom of either of the side-chain carboxyl groups of Gla with the C delta-O-X2+ bond angle fixed at one of three values, the lowest-energy cis conformation is about 1 kcal-mol-1 lower in energy than the lowest-energy trans conformation; i.e. the two structures have similar energies. In these structures, four oxygen atoms, two from each Gla side-chain, approach the model Ca2+ ion closely, in a manner similar to that seen in crystals of calcium alpha-ethylmalonate (Zell, A., Einspahr, H. & Bugg, C.E. (1985) Biochemistry 24, 533-537). It appears that the binding of Ca2+ to the 18-23 cyclic peptide may alter the equilibrium between cis and trans structures such that the fraction of cis isomers is greater in the presence of Ca2+.  相似文献   

5.
The thermal decarboxylation of N-benzyloxycarbonyl-L-gamma-carboxyglutamic acid alpha-methyl ester [Z)-L-Gla-OMe) has been studied. In the presence of increasing amounts of calcium or magnesium ions, lyophilized powders of (Z)-L-Gla-OMe exhibit a corresponding increase in thermal stability. Both magnesium and calcium form relatively tight, thermally stable complexes with (Z)-L-Gla-OMe at high metal ion concentrations. Differences between Ca(II) and Mg(II) binding are noted at low metal ion concentrations, where (Z)-L-Gla-OMe is in excess. Under these conditions, complex formation with Mg(II) apparently favors a 2:1 Gla-magnesium ion complex in which both Gla residues are unstable to thermal decarboxylation. Calcium ion complexes, however, are found to favor a 3:1 Gla-calcium ion complex in which 1 of the 3 Gla residues is thermally stable.  相似文献   

6.
We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-stranded alpha-helix bundle, as revealed by circular dichroism (CD) spectroscopy and sedimentation equilibrium analysis. By titration with metal ions and monitoring the change in the intensity of the CD spectra at 222 nm, the dissociation constant Kd was determined to be 1.5 +/- 0.8 microM for Cd(II). The triple-stranded complex formed by the 113Cd(II) ion showed a single 113Cd NMR resonance at 572 ppm whose chemical shift was not affected by the presence of Cl- ions. The 113Cd NMR resonance was connected with the betaH protons of the cysteine residue by 1H-113Cd heteronuclear multiple quantum correlation spectroscopy. These NMR results indicate that the three cysteine residues are coordinated to the cadmium ion in a trigonal-planar complex. Hg(II) also induced the assembly of the peptide into a triple-stranded alpha-helical bundle below the Hg(II)/peptide ratio of 1/3. With excess Hg(II), however, the alpha-helicity of the peptide was decreased, with the change of the Hg(II) coordination state from three to two. Combining this construct with other functional domains should facilitate the production of artificial proteins with functions controlled by metal ions.  相似文献   

7.
Detailed investigations of a serum peptide (less than Glu1-Ala2-Lys3-Ser4-Gln5-Gly6-Gly7-Ser8-++ +Asn9) were carried out by 1H and 13C NMR spectroscopy to elucidate the structure of the complex formed with Zn(II), thymulin, which has been found to be active in vivo. These experiments were performed in dimethyl sulfoxide-d6 solution at different metal:peptide ratios. The results suggest the following conclusions. (i) The Zn(II) complexation corresponds to a fast exchange on the NMR time scale. (ii) The evolution of 1H and 13C NMR chemical shifts indicates the existence of two types of complexes: a 1:2 species associating two peptide molecules and one Zn(II) ion and a complex with 1:1 stoichiometry. The former is predominant for metal:peptide ratios below unity. (iii) In the 1:2 complex, Zn(II) is coordinated by the Ser4-O gamma H and Asn9-CO2- sites, while in the 1:1 complex, Ser8-O gamma H is the third ligand to the Zn(II) ion. The results are compared with those for the [Ala4] and [Ala8] analogues, and those for the complexes of thymulin with other metal ions (Cu2+ and Al3+) in terms of its biological activity. These comparative studies suggested that the 1:1 complex is the only conformation recognized by the antibodies.  相似文献   

8.
Equilibrium dialysis results are presented for Ca(II) and Mg(II) ion binding to human and bovine prothrombin and fragment 1. Ca(II) ions bind cooperatively, Mg(II) does not.  相似文献   

9.
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 μM, whereas the apparent activation constant K a is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 Å of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 μM for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.  相似文献   

10.
The interaction of guanosine-5'-monophosphoric acid (H2-GMP) with the alkaline earth metal ions has been studied in aqueous solution at neutral pH. The crystalline salts of the type Mg-GMP.5H2O, Ca-GMP.6H2O, Sr-GMP.7H2O, and Ba-GMP.7H2O were isolated and characterized by Fourier transform ir, 1H-nmr and x-ray powder diffraction measurements. Two types of macrochelate complexes have been identified: (a) The direct metalbase and indirect metal-phosphate bindings (inner and outer sphere interaction) for the Mg(II), Ca(II), and Sr(II), ions; and (b) the indirect metal-base and direct metal-phosphate bindings (outer and inner sphere interaction) for the Ba(II) ion. In aqueous solution, an equilibrium exists between the base-metal-H2O...PO3 and base...H2O-M-PO3 interactions. The ribose moiety shows C3'-endo/anti conformation in the free acid; C2'-endo/anti in the Na2-GMP salt; C3'-endo/anti in the Mg(II)-, Ca(II)-, and Sr(II)-GMP salts; and C2'-endo/anti, in the Ba(II)-GMP salt.  相似文献   

11.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl(3), the content of bound Fe(III) can be increased from a natural concentration of approximately 180 ppm to a saturation limit of approximately 80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH-dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)-saturated melanin sample without affecting the amount of Fe(III) pre-adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o-dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer-Emmett-Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

12.
Polyene complexes with Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II) have been prepared and evaluated for biological activity in a flow microcalorimetric study. The bioactivities are all lower per g of complex than is the bioactivity of the patent polyene, nystatin. However extrapolation of the linear bioassay data suggests that because of enhanced solubilities the metal ion complexes may be able to yield higher overall bioactivity than can nystatin alone.  相似文献   

13.
Rat matrix-induced alkaline phosphatase is an enzyme which requires magnesium and zinc ions for its maximal activity. Two Zn(II) ions and one Mg(II) ion are bound to each subunit of native dimeric enzyme. The presence of magnesium ion (10-100 microM) or zinc ion (7-20 nM) alone is sufficient to stimulate apoenzyme activity. However maximal activity (264 U/mg) requires the presence of both ions. Binding of Zn(II) ions to the Mg(II) binding site causes a strong inhibition of the apoenzyme while the binding of Mg(II) on Zn(II) binding site is not sufficient to stimulate PNPPase activity of the apoenzyme. Binding of both ions to the enzyme molecule did not change the apparent dissociation constant for PNPP hydrolysis.  相似文献   

14.
E E Snyder  B W Buoscio  J J Falke 《Biochemistry》1990,29(16):3937-3943
The molecular mechanisms by which protein Ca(II) sites selectively bind Ca(II) even in the presence of high concentrations of other metals, particularly Na(I), K(I), and Mg(II), have not been fully described. The single Ca(II) site of the Escherichia coli receptor for D-galactose and D-glucose (GGR) is structurally related to the eukaryotic EF-hand Ca(II) sites and is ideally suited as a model for understanding the structural and electrostatic basis of Ca(II) specificity. Metal binding to the bacterial site was monitored by a Tb(III) phosphorescence assay: Ca(II) in the site was replaced with Tb(III), which was then selectively excited by energy transfer from protein tryptophans. Photons emitted from the bound Tb(III) enabled specific detection of this substrate; for other metals binding was detected by competitive displacement of Tb(III). Representative spherical metal ions from groups IA, IIA, and IIIA and the lanthanides were chosen to study the effects of metal ion size and charge on the affinity of metal binding. A dissociation constant was measured for each metal, yielding a range of KD's spanning over 6 orders of magnitude. Monovalent metal ions of group IA exhibited very low affinities. Divalent group IIA metal ions exhibited affinities related to their size, with optimal binding at an effective ionic radius between those of Mg(II) (0.81 A) and Ca(II) (1.06 A). Trivalent metal ions of group IIIA and the lanthanides also exhibited size-dependent affinities, with an optimal effective ionic radius between those of Sc(III) (0.81 A) and Yb(III) (0.925 A). The results indicate that the GGR site selects metal ions on the basis of both charge and size.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cyclosporin A (CsA) is an important drug used to prevent graft rejection in organ transplantations. Its immunosuppressive activity is related to the inhibition of T-cell activation through binding with the proteins Cyclophilin (Cyp) and, subsequently, Calcineurin (CN). In the complex with its target (Cyp), CsA adopts a conformation with all trans peptide bonds and this feature is very important for its pharmacological action. Unfortunately, CsA can cause several side effects, and it can favor the excretion of calcium and magnesium. To evaluate the possible role of conformational effects induced by these two metal ions in the action mechanism of CsA, its complexes with Mg(II) and Ce(III) (the latter as a paramagnetic probe for calcium) have been examined by two-dimensional NMR and relaxation rate analysis. The conformations of the two complexes and of the free form have been determined by restrained molecular dynamics calculations based on the experimentally obtained metal-proton and interproton distances. The findings here ratify the formation of 1:1 complexes of CsA with both Mg(II) and Ce(III), with metal coordination taking place on carbonyl oxygens and substantially altering the peptide structure with respect to the free form, although the residues involved and the resulting conformational changes, including cis-trans conversion of peptide bonds, are different for the two metals.  相似文献   

16.
Bowen LM  Muller G  Riehl JP  Dupureur CM 《Biochemistry》2004,43(48):15286-15295
Type II restriction enzymes are homodimeric systems that bind four to eight base pair palindromic recognition sequences of DNA and catalyze metal ion-dependent phosphodiester cleavage. While Mg(II) is required for cleavage in these enzymes, in some systems Ca(II) promotes avid substrate binding and sequence discrimination. These properties make them useful model systems for understanding the roles of alkaline earth metal ions in nucleic acid processing. We have previously shown that two Ca(II) ions stimulate DNA binding by PvuII endonuclease and that the trivalent lanthanide ions Tb(III) and Eu(III) support subnanomolar DNA binding in this system. Here we capitalize on this behavior, employing a unique combination of luminescence spectroscopy and DNA binding assays to characterize Ln(III) binding behavior by this enzyme. Upon excitation of tyrosine residues, the emissions of both Tb(III) and Eu(III) are enhanced severalfold. This enhancement is reduced by the addition of a large excess of Ca(II), indicating that these ions bind in the active site. Poor enhancements and affinities in the presence of the active site variant E68A indicate that Glu68 is an important Ln(III) ligand, similar to that observed with Ca(II), Mg(II), and Mn(II). At low micromolar Eu(III) concentrations in the presence of enzyme (10-20 microM), Eu(III) excitation (7)F(0) --> (5)D(0) spectra yield one dominant peak at 579.2 nm. A second, smaller peak at 579.4 nm is apparent at high Eu(III) concentrations (150 microM). Titration data for both Tb(III) and Eu(III) fit well to a two-site model featuring a strong site (K(d) = 1-3 microM) and a much weaker site (K(d) approximately 100-200 microM). Experiments with the E68A variant indicate that the Glu68 side chain is not required for the binding of this second Ln(III) equivalent; however, the dramatic increase in DNA binding affinity around 100 microM Ln(III) for the wild-type enzyme and metal-enhanced substrate affinity for E68A are consistent with functional relevance for this weaker site. This discrimination of sites should make it possible to use lanthanide substitution and lanthanide spectroscopy to probe individual metal ion binding sites, thus adding an important tool to the study of restriction enzyme structure and function.  相似文献   

17.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl3, the content of bound Fe(III) can be increased from a natural concentration of ~180 ppm to a saturation limit of ~80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH‐dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)‐saturated melanin sample without affecting the amount of Fe(III) pre‐adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o‐dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer–Emmett–Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

18.
A cyclic pentapeptide c(Tyr-Leu-Ala-Gly-Pro) (I), which was isolated and identified from Pseudostellaria heterophylla medicinal herbs, and two cyclic heptapeptides, c(Gly-Tyr-Gly-Gly-Pro-Phe-Pro) (II) and c(Gly-Ile-Pro-Tyr-Ile-Ala-Ala) (III), which were isolated and identified from Stellaria yunnanensis Franch (M), were synthesized by using 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3 H)-one (DEPBT) as a coupling reagent in solution, and mediated by different metal ions, from their linear peptide precursors H-Tyr-Leu-Ala-Gly-Pro-OH (I-1) and H-Ala-Gly-Pro-Tyr-Leu-OH (I-2), H-Gly-Tyr-Gly-Gly-Pro-Phe-Pro-OH (II-1) and H-Gly-Ile-Pro-Tyr-Ile-Ala-Ala-OH (III-1), respectively. The results show that alkali metal ions can improve the cyclization yields and/or the cyclization rates of linear peptide precursors, such as Na(+) ion is favorable for the cyclization of linear pentapeptides and Cs(+) ion is favorable for the cyclization of linear heptapeptides, while some bivalent and trivalent metal ions, such as Mg(2+), Ca(2+), Zn(2+), Fe(2+), Ni(2+) and Cr(3+) reduced/inhibited both the cyclization yields and the cyclization rates of the linear peptide precursors. The circular dichroism spectra of I-1, II-1 and III-1 with different metal ions were studied to elucidate the changes in their secondary structures. It is shown that Cs(+) can induce and stabilize the type I beta-turn conformation in the linear heptapeptide II-1 and the type II beta-turn conformation in the linear heptapeptide III-1.  相似文献   

19.
The dissociation kinetics of complexes of bovine alpha-lactalbumin and cod parvalbumin with Ca(II) and Mg(II) ions induced by mixing of a Ca(II)- or MG(II)-loaded protein with a chelator of divalent cations (EDTA or EGTA) have been studied by means of the stopped-flow method with intrinsic protein fluorescence registration. Within the temperature interval from 10 to approx. 37 degrees C kinetic curves for Ca(II) removal from alpha-lactalbumin are monoexponential with a rate constant ranging from 0.006 to 1 s. Taking into account the rather low rate of fluorescence changes, one can assume that the limiting stage in this case is the dissociation of the single bound Ca(II) ion from the protein and not a conformational transition which occurs after Ca(II) dissociation. At temperatures above 37 degrees C the kinetic curves require at least two exponential terms for a satisfactory fit. The second exponential seems to be due to denaturation of the apo form of alpha-lactalbumin which takes place at these temperatures. The values of the dissociation rate constants for Mg(II) bound to alpha-lactalbumin practically coincide with those for Ca(II). Within the temperature interval 10-30 degrees C the kinetic curves for Ca(II) and Mg(II) removal from parvalbumin are best fitted by a sum of two exponential terms identified as arising from the dissociation of cations from the two binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Stoichiometry, kinetics, and optical properties of rabbit muscle pyruvate kinase activated with Co(II), Ni(II), Mg(II), and Mn(II) were studied. The stoichiometry of metal binding to enzyme was found to be 4 metal ions per tetrameric enzyme for Co(II) and Ni(II) by carrying out circular dichroic titrations. Cu(II) and Fe(II) were inactive. Ca(II) and Zn(II) were not activating, and were inhibitory with respect to all of the active cations. The temperature dependence of the optimal velocity is similar for all activating metals. The pH rate profiles suggest that there are two classes of enzyme activation by metal ions. Mg(II) and Mn(II) are quite similar to each other while Co(II) and Ni(II) are different from them but similar to each other. Absorption, natural, and magnetic CD in the visible region were used to probe the environment of the activating divalent cation in Ni(II)- and Co(II)-activated pyruvate kinase and their complexes with substrates and inhibitors...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号