首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
The in vitro folding of rhodanese involves a competition between formation of properly folded enzyme and off-pathway inactive species. Co-solvents like glycerol or low temperature, e.g. refolding at 10 degrees C, successfully retard the off-pathway formation of large inactive aggregates, but the process does not yield 100% active enzyme. These data suggest that mis-folded species are formed from early folding intermediates. GroEL can capture early folding intermediates, and it loses the ability to capture and reactivate rhodanese if the enzyme is allowed first to spontaneously fold for longer times before it is presented to GroEL, a process that leads to the formation of unproductive intermediates. In addition, GroEL cannot reverse large aggregates once they are formed, but it could capture some folding intermediates and activate them, even though they are not capable of forming active enzyme if left to spontaneous refolding. The interaction between GroEL and rhodanese substantially but not completely inhibits intra-protein inactivation, which is responsible for incomplete activation during unassisted refolding. Thus, GroEL not only decreases aggregation, but it gives the highest reactivation of any method of assistance. The results are interpreted using a previously suggested model based on studies of the spontaneous folding of rhodanese (Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120--128 and Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63--70).  相似文献   

2.
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.  相似文献   

3.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

4.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

5.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

6.
In vitro refolding of the monomeric mitochondrial enzyme, rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is facilitated by molecular chaperonins. The four components: two proteins from Escherichia coli, chaperonin 60 (groEL) and chaperonin 10 (groES), MgATP, and K+, are necessary for the in vitro folding of rhodanese. These were previously shown to be necessary for the in vitro folding of ribulose-1,5-bisphosphate carboxylase at temperatures in excess of 25 degrees C (Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O'Keefe, D. P., and Lorimer, G. H. (1990) Biochemistry 29, 5665-5671). The labile folding intermediate, rhodanese-I, which rapidly aggregates at 37 degrees C in the absence of the chaperonins, can be stabilized by forming a binary complex with chaperonin 60. The discharge of the binary chaperonin 60-rhodanese-I complex, results in the formation of active rhodanese, and requires the presence of chaperonin 10. Optimal refolding is associated with a K(+)-dependent hydrolysis of ATP. At lower protein concentrations and 25 degrees C, where aggregation is reduced, a fraction of the rhodanese refolds to an active form in the absence of the chaperonins. This spontaneous refolding can be arrested by chaperonin 60. There is some refolding (approximately equal to 20%) when ATP is replaced by nonhydrolyzable analogs, but there is no refolding in the presence of ADP or AMP. ATP analogs may interfere with the interaction of rhodanese-I with the chaperonins. Nondenaturing detergents facilitate rhodanese refolding by interacting with exposed hydrophobic surfaces of folding intermediates and thereby prevent aggregation (Tandon, S., and Horowitz, P. (1986) J. Biol. Chem. 261, 15615-15618). The chaperonin proteins appear to play a similar role in as much as they can replace the detergents. Consistent with this view, chaperonin 60, but not chaperonin 10, binds 2-3 molecules of the hydrophobic fluorescent reporter, 1,1'-bi(4-anilino)naphthalene-S,5'-disulfonic acid, indicating the presence of hydrophobic surfaces on chaperonin 60. The number of bound probe molecules is reduced to 1-2 molecules when chaperonin 10 and MgATP are added. The results support a model in which chaperonins facilitate folding, at least in part, by interacting with partly folded intermediates, thus preventing the interactions of hydrophobic surfaces that lead to aggregation.  相似文献   

7.
In vitro refolding of the urea-unfolded, monomeric, mitochondrial enzyme rhodanese (thiosulfate sulfur-transferase; EC 2.8.1.1) is facilitated by the chaperonin proteins cpn60 and cpn10 from Escherichia coli at 37 degrees C, but the refolding is strongly inhibited at 10 degrees C. In contrast, the unassisted refolding of rhodanese is efficient at 10 degrees C, but the refolding efficiency decreases as the temperature is raised. These observations provided two measures of the cpn60-rhodanese complex. Thus, we monitored either 1) the cpn60-dependent inhibition of spontaneous folding at 10 degrees C or 2) the recovery of active rhodanese in the complete chaperonin system at 25 degrees C, after first forming a cpn60-rhodanese complex at 10 degrees C. These procedures minimized the aggregation of interactive folding intermediates that tend to overestimate the apparent number of cpn60 14-mers in determining the stoichiometry of protein-cpn60 14-mer interactions. Both procedures used here gave results that were consistent with there being 1 rhodanese binding site/cpn60 tetradecamer. This stoichiometry is significantly less than might be expected from the fact that cpn60 is composed of 14 identical subunits, and it may indicate that rhodanese interacts with a restricted region that is formed when the cpn60 tetradecamer is assembled. The ability to stabilize chaperonin-protein complexes that can subsequently be reactivated will aid studies of the mode of action of the ubiquitous chaperonin proteins.  相似文献   

8.
Hydrostatic pressure can be considered as "thermodynamic tweezers" to approach the protein folding problem and to study the cases when folding goes wrong leading to the protein folding disorders. The main outcome of the use of high pressure in this field is the stabilization of folding intermediates such as partially folded conformations, thus allowing us to characterize their structural properties. Because partially folded intermediates are usually at the intersection between productive and off-pathway folding, they may give rise to misfolded proteins, aggregates and amyloids that are involved in many neurodegenerative diseases, such as transmissible spongiform encephalopathies, Alzheimer's disease, Parkinson's disease and Huntington's disease. Of particular interest is the use of hydrostatic pressure to unveil the structural transitions in prion conversion and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform, the PrP(Sc) (from scrapie). It has been demonstrated that hydrostatic pressure affects the balance between the different prion species. The last findings on the application of high pressure on amyloidogenic proteins will be discussed here as regards to their energetic and volumetric properties. The use of high pressure promises to contribute to the identification of the underlying mechanisms of these neurodegenerative diseases and to develop new therapeutic approaches.  相似文献   

9.
T Kiefhaber  R Quaas  U Hahn  F X Schmid 《Biochemistry》1990,29(12):3061-3070
The slow refolding of ribonuclease T1 was investigated by different probes. Structural intermediates with secondary structure are formed early during refolding, as indicated by the rapid regain of a native-like circular dichroism spectrum in the amide region. This extensive structure formation is much faster than the slow steps of refolding, which are limited in rate by the reisomerization of incorrect proline isomers. The transient folding intermediates were also detected by unfolding assays, which make use of the reduced stability of folding intermediates relative to that of the native protein. The results of this and the preceding paper [Kiefhaber et al. (1990) Biochemistry (preceding paper in this issue)] were used to propose kinetic models for the unfolding and refolding of ribonuclease T1. The unfolding mechanism is based on the assumption that, after the structural unfolding step, the slow isomerizations of two X-Pro peptide bonds occur independently of each other in the denatured protein. At equilibrium a small amount of fast-folding species coexists with three slow-folding species: two with one incorrect proline isomer each and another, dominant species with both these prolines in the incorrect isomeric state. In the mechanism for refolding we assume that all slow-folding molecules can rapidly regain most of the secondary and part of the tertiary structure early in folding. Reisomerizations of incorrect proline peptide bonds constitute the slow, rate-limiting steps of refolding. A peculiar feature of the kinetic model for refolding is that the major unfolded species with two incorrect proline isomers can enter two alternative folding pathways, depending on which of the two reisomerizes first. The relative rates of reisomerization of the respective proline peptide bonds at the stage of the rapidly formed intermediate determine the choice of pathway. It is changed in the presence of prolyl isomerase, because this enzyme catalyzes these two isomerizations with different efficiency and consequently leads to a shift from the very slow to the intermediate refolding pathway.  相似文献   

10.
The initial steps of heat-induced inactivation and aggregation of the enzyme rhodanese have been studied and found to involve the early formation of modified but catalytically active conformations. These intermediates readily form active dimers or small oligomers, as evident from there being only a small increase in light scattering and an increase in fluorescence energy homotransfer from rhodanese labeled with fluorescein. These species are probably not the domain-unfolded form, as they show activity and increased protection of hydrophobic surfaces. Cross-linking with glutaraldehyde and fractionation by gel filtration show the predominant formation of dimer during heat incubation. Comparison between the rates of aggregate formation at 50 degrees C after preincubation at 25 or 40 degrees C gives evidence of product-precursor relationships, and it shows that these dimeric or small oligomeric species are the basis of the irreversible aggregation. The thermally induced species is recognized by and binds to the chaperonin GroEL. The unfoldase activity of GroEL subsequently unfolds rhodanese to produce an inactive conformation and forms a stable, reactivable complex. The release of 80% active rhodanese upon addition of GroES and ATP indicates that the thermal incubation induces an alteration in conformation, rather than any covalent modification, which would lead to formation of irreversibly inactive species. Once oligomeric species are formed from the intermediates, GroEL cannot recognize them. Based on these observations, a model is proposed for rhodanese aggregation that can explain the paradoxical effect in which rhodanese aggregation is reduced at higher protein concentration.  相似文献   

11.
Foguel D  Silva JL 《Biochemistry》2004,43(36):11361-11370
Hydrostatic pressure is a robust tool for studying the thermodynamics of protein folding and protein interactions, as well as the dynamics and structure of folding intermediates. One of the main innovations obtained from using high pressure is the stabilization of folding intermediates such as molten-globule conformations, thus providing a unique opportunity for characterizing their structure and dynamics. Equally important is the prospect of understanding protein misfolding diseases by using pressure to populate partially folded intermediates at the junction between productive and off-pathway folding, which may give rise to misfolded proteins, aggregates, and amyloids. High hydrostatic pressure (HHP) has also been used to dissociate nonamyloid aggregates and inclusion bodies. In many proteins, the competition between correct folding and misfolding can lead to formation of insoluble aggregates, an important problem for the biotechnology industry and for human pathologies such as amyloidosis, Alzheimer's, Parkinson's, prion's, and tumor diseases. The diversity of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotechnology companies. The use of high-pressure promises to contribute to the identification of the mechanisms behind these defects and creation of therapies against these diseases.  相似文献   

12.
A hydrophobic cluster forms early in the folding of dihydrofolate reductase   总被引:5,自引:0,他引:5  
The rapid kinetic phase that leads from unfolded species to transient folding intermediates in dihydrofolate reductase from Escherichia coli was examined by site-directed mutagenesis and by physicochemical means. The absence of this fluorescence-detected phase in the refolding of the Trp-74Phe mutant protein strongly implies that this early phase in refolding can be assigned to just one of the five Trp residues in the protein, Trp-74. In addition, water-soluble fluorescence quenching agents, iodide and cesium, have a much less significant effect on this early step in refolding than on the slower phases that lead to native and native-like conformers. These and other data imply that an important early event in the folding of dihydrofolate reductase is the formation of a hydrophobic cluster which protects Trp-74 from solvent.  相似文献   

13.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   

14.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group’s oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

15.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

16.
High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.  相似文献   

17.
Human muscle creatine kinase (CK) is an enzyme that plays an important physiological role in the energy metabolism of humans. It also serves as a typical model for studying refolding of proteins. A study of the refolding and reactivation process of guanidine chloride-denatured human muscle CK is described in the present article. The results show that the refolding process can be divided into fast and slow folding phases and that an aggregation process competes with the proper refolding process at high enzyme concentration and high temperature. An intermediate in the early stage of refolding was captured by specific protein molecules: the molecular chaperonin GroEL and alpha(s)-casein. This intermediate was found to be a monomer, which resembles the "molten globule" state in the CK folding pathway. To our knowledge, this is the first monomeric intermediate captured during refolding of CK. We propose that aggregation is caused by interaction between such monomeric intermediates. Binding of GroEL with this intermediate prevents formation of aggregates by decreasing the concentration of free monomeric intermediates, whereas binding of alpha(s)-casein with this intermediate induces more aggregation.  相似文献   

18.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

19.
Two different types of insoluble, non-native aggregates of recombinant human growth hormone were formed by agitation in buffer or buffer containing 0.75 m guanidine HCl (GdnHCl) and characterized by infrared and second derivative UV spectroscopies. The degree of secondary structural perturbation was greater in the aggregates formed in 0.75 m GdnHCl. Both aggregate types were dissolved and refolded using high hydrostatic pressures in combination with either elevated temperature or non-denaturing levels of guanidine HCl or urea. The effects of a range of temperature, pressure, and chaotrope concentrations were tested and led to optimal conditions that approached 100% yield of native protein. The aggregates formed in 0.75 m GdnHCl required higher concentrations of urea or GdnHCl, or higher temperature or pressure for a yield equivalent to that for aggregates formed in buffer alone. Investigation of the effects of pressure, temperature, and chaotrope on unfolding of rhGH documented that under conditions used for optimal high pressure disaggregation and refolding, the native state is greatly favored thermodynamically (e.g. 25 kJ/mol at 2000 bar and 0.75 m GdnHCl). Dissolution of aggregates under pressure is a kinetically limited process. Comparison of refolding yields in GdnHCl and urea solutions suggest that pressure effects on electrostatic interactions do not dominate pressure effects on disaggregation. We suggest that non-native hydrogen bonds between protein molecules within aggregates of recombinant human growth hormone are responsible for the rate-limiting kinetic barrier in pressure-induced disaggregation.  相似文献   

20.
Refolding of hen egg white lysozyme after pressure unfolding was measured by FTIR spectroscopy. The high-pressure treatment was found to be useful for unfolding/refolding studies because pressure acts against aggregation, and therefore no irreversible aggregation takes place during the pressure treatment. After the release of the pressure, folding intermediate structures were found which were formed during the decompression of the lysozyme. These were aggregation prone when heated, as indicated by their lower stability against aggregation. The intermediates were only formed if the protein was unfolded, subdenaturing pressures could not populate these intermediates. We introduced the notion of a superfunnel to describe the free energy landscape of interacting polypeptide chains. This can explain the propensity of folding intermediates to aggregate. A possible Gibbs-free energy landscape for lysozyme was constructed for the whole pressure-temperature plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号