首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+4 and NO3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15N and on organic 15N dynamics in soils incubated with 15N added as NH+4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+4 and NO3 were assimilated, in proportion to their concentration in the soil.  相似文献   

2.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

3.
Bhatti  J. S.  Apps  M. J.  Jiang  H. 《Plant and Soil》2002,242(1):1-14
The interacting influence of disturbances and nutrient dynamics on aboveground biomass, forest floor, and mineral soil C stocks was assessed as part of the Boreal Forest Transect Case Study in central Canada. This transect covers a range of forested biomes–-from transitional grasslands (aspen parkland) in the south, through boreal forests, and into the forested subarctic woodland in the north. The dominant forest vegetation species are aspen, jack pine and spruce. Disturbances influence biomass C stocks in boreal forests by determining its age-class structure, altering nutrient dynamics, and changing the total nutrient reserves of the stand. Nitrogen is generally the limiting nutrient in these systems, and N availability determines biomass C stocks by affecting the forest dynamics (growth rates and site carrying capacity) throughout the life cycle of a forest stand. At a given site, total and available soil N are determined both by biotic factors (such as vegetation type and associated detritus pools) and abiotic factors (such as N deposition, soil texture, and drainage). Increasing clay content, lower temperatures and reduced aeration are expected to lead to reduced N mineralization and, ultimately, lower N availability and reduced forest productivity. Forest floor and mineral soil C stocks vary with changing balances between complex sets of organic carbon inputs and outputs. The changes in forest floor and mineral soil C pools at a given site, however, are strongly related to the historical changes in biomass at that site. Changes in N availability alter the processes regulating both inputs and outputs of carbon to soil stocks. N availability in turn is shaped by past disturbance history, litter fall rate, site characteristics and climatic factors. Thus, understanding the life-cycle dynamics of C and N as determined by age-class structure (disturbances) is essential for quantifying past changes in forest level C stocks and for projecting their future change.  相似文献   

4.
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post‐anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the ‘waste’ of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.  相似文献   

5.
Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13C and δ15N values (i.e., result in artificially lower δ13C and δ15N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific “C:N thresholds” provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13C values were observed for known regional movements of DUS and RAG (δ13CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13C and δ15N values to examine elasmobranch ecology.  相似文献   

6.
冬小麦生境中土壤养分对凋落物碳氮释放的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
土壤养分影响植物生长, 进而影响凋落物质量和产量; 凋落物质量和产量影响凋落物分解过程。基于一个生长实验和一个相同环境分解实验, 研究了冬小麦(Triticum aestivum)生境中养分可利用性对凋落物碳(C)和氮(N)释放的影响。结果显示: (1)冬小麦凋落物产量、叶/根C:N比、C释放量和N释放量随土壤养分梯度呈单调变化; (2)土壤养分影响叶凋落物丢失率而不影响根凋落物丢失率; (3)初始叶/根C:N比与其C、N释放量之间存在负相关关系; (4)分解过程降低叶C:N比和根C:N比。结果表明: 生境中土壤养分的提高可加速凋落物C、N归还, 这反过来可能促进冬小麦生长, 因此这种效应是正反馈; 初始C:N比可预测凋落物C、N释放量。  相似文献   

7.
大气CO2升高和蚯蚓活动对土壤C、N的影响   总被引:1,自引:0,他引:1  
宋琰  肖能文  戈峰 《生态学报》2007,27(7):2922-2928
以加倍CO2浓度(750μmol/mol)处理和正常CO2浓度(370μmol/mol)生长下的棉花凋落叶为试验材料,以威廉腔蚓Metaphire guillemi(Michaelsen,1895)和不同的CO2浓度(750μmol/mol和370μmol/mol)为作用因子,分析了蚯蚓、CO2浓度通过叶片分解对土壤C、N含量的影响。结果表明:接种蚯蚓和加入凋落叶的联合作用对有机C有显著提高作用。接种蚯蚓对土壤全N含量影响不显著,但CO2浓度升高和蚯蚓联合作用对土壤全N含量有显著影响。CO2、叶片、蚯蚓3因子联合作用对土壤C、N含量有显著提高作用,且与蚯蚓和叶片联合作用对土壤C、N含量的影响相比,其效果更显著。结果显示,CO2浓度的升高通过改变植物凋落物C含量及其营养成分,影响了其潜在的降解有效性,同时大气CO2浓度的升高影响凋落物在蚯蚓体内降解过程,从而对凋落物的有效降解产生显著影响,最终改变土壤C、N含量。  相似文献   

8.
胡亚林  曾德慧  姜涛 《生态学报》2009,29(8):4206-4214
土地利用/覆被变化是影响陆地生态系统C、N、P循环过程的重要因素之一.退耕还林作为一种重要的土地利用/覆被变化,受到国内外研究人员的广泛关注.以科尔沁沙地农田、5年生杨树人工林和10年生杨树人工林为研究对象,开展了退耕还林对生态系统C、N、P储量和空间格局影响的研究.结果发现:(1)与农田相比,退耕5年杨树人工林生态系统总的C、N、P储量下降,然而10年生杨树人工林生态系统总的C、N、P储量升高,其中植物生物量的C、N、P储量占生态系统总储量比例随着退耕还林年龄的增加逐渐增大;(2)与5年生杨树人工林相比,退耕还林10年的杨树人工林树叶、树枝、树干、树根和凋落物的C、N、P储量均显著增加(P<0.05),不同元素(C、N、P)储量在退耕5和10年的杨树人工林各器官空间分配格局不同;(3)与农田相比较,退耕还林5年杨树人工林土壤C、N、P储量在不同土层(0~10 cm、10~20 cm、20~40 cm 和40~60 cm)均表现出下降趋势,而10年生杨树人工林土壤C、N、P储量在不同土层表现出增加趋势,不同生态系统类型(农田、5年杨树人工林和10年杨树人工林)土壤C、N、P储量在各土层分配格局不同.上述结果充分表明,在我国科尔沁沙地将农田退耕为杨树人工林能够显著改变生态系统C、N、P储量和空间分配格局.  相似文献   

9.
不同土地利用方式对潮棕壤有机碳含量的影响   总被引:8,自引:1,他引:7  
对潮棕壤不同土地利用方式下0~100 cm土体中土壤有机碳含量的剖面分布、有机碳储量及C/N进行了研究.结果表明:不同土地利用方式下土壤有机碳含量的剖面分布差异明显,林地、割草地、荒地及裸地各土层有机碳含量高于农田生态系统;不同土地利用方式下的土壤有机碳与全氮呈极显著的正相关;土壤C/N随剖面土层深度的增加呈下降趋势,林地土壤的C/N相对较高,割草地、荒地和裸地次之,农田生态系统的土壤C/N较低.在0~100cm深度土壤,荒地每年截获的土壤有机碳分别比农田不施肥、农田循环猪圈肥处理、农田化肥NPK处理、农田化肥NPK 循环猪圈肥处理高4.52、4.25、4.46和3.58 t.hm-2.说明荒地在增加土壤有机碳储量方面有很大潜力.  相似文献   

10.
通过原位进行了对照(CK)、低氮(LN,50kgN.hm-2.a-1)、中氮(MN,100kgN.hm-2.a-1)和高氮(HN,150kgN.hm-2.a-1)处理,研究了川西南天然常绿阔叶林凋落物分解及养分释放对模拟N沉降的响应.结果表明:凋落物分解95%需要4.72~6.33年,分解率最高的为CK,最低的为HN.经过365d,各处理的分解率均低于CK,仅HN与CK间差异显著(P<0.05);C残留率均高于CK;N和K残留率均显著高于CK(P<0.05);P残留率均高于CK,仅LN与CK间差异显著(P<0.05).各处理凋落物的C/N升高3.9%~23.7%.凋落物分解过程中N元素的迁移模式为富集-释放,C、P和K元素则表现为直接释放.N沉降对凋落物中养分元素的释放及木质素和纤维素的降解均具有抑制作用.随着处理时间的延长,N沉降对川西南常绿阔叶林凋落物分解的影响从正效应转向负效应,且负效应随沉降浓度的增加而加强.  相似文献   

11.
草地植物根系碳储量和碳流转对CO2浓度升高的响应   总被引:2,自引:0,他引:2  
吴伊波  崔骁勇 《生态学报》2009,29(1):378-388
植物根系是陆地生态系统重要的碳汇和矿质养分库,也是土壤中碳及养分的主要来源,只有深入认识CO2浓度升高下根系的碳汇功能和根系周转对土壤碳库的影响,才能准确预测生态系统对全球变化的响应与反馈调节作用.介绍了CO2浓度升高对草地植物根系生物量、根系凋落物的数量和品质以及根系周转速率的影响,指出研究植物体内碳向根分配格局的变化趋势必须考虑CO2浓度升高的直接和间接两方面作用;在预测根系碳库储量的动态变化时,需要区分不同功能根系组分的生物量;为更准确估算根系周转速率,有必要确立草地植物根系直径与其寿命之间的关系;CO2浓度升高普遍提高根系凋落物的C/N,但以此判定其在土壤中的分解速率快慢并不可靠,需要进一步从机理上探究根系凋落物分解的控制因素.  相似文献   

12.
芦苇湿地土壤有机碳和全氮含量的垂直分布特征   总被引:32,自引:5,他引:27  
利用元素分析仪,测定了芦苇湿地不同层次土壤有机碳和全N的变化.结果表明,土壤有机碳、全N及C/N随土壤深度的增加呈下降趋势.对不同月份(7、8、9和10月)而言,有机碳、全N及C/N比累积峰位于不同的土层中.土壤温度、水分及芦苇生长状况是引起分异的重要因子.7、8和10月份芦苇湿地不同层次土壤有机碳与全N呈显著相关(R2=0.73、0.73、0.71),而9月份芦苇湿地不同层次土壤有机碳与全N之间的相关性相对较差(R2=0.41).土壤C/N与土壤有机碳、全N均呈负相关,但C/N与全N的相关性强于土壤有机碳,说明C/N的大小主要决定于全N含量.  相似文献   

13.
有机物料中有机碳和有机氮的分解进程及分解残留率   总被引:13,自引:0,他引:13  
柳敏  张璐  宇万太  沈善敏 《应用生态学报》2007,18(11):2503-2506
在中国科学院沈阳生态站(埋袋法)和海伦站(砂滤管法)研究了不同有机物料中有机碳和有机氮的矿化进程、分解残留率和C/N的动态变化.结果表明:有机物料中有机碳和有机氮的分解进程可分为快、慢2个阶段;各有机物料中有机氮的矿化速率均明显低于有机碳,因而其残留率高于有机碳;有机物料C/N的下降速率也可分为快、慢2个阶段.经3~5年分解后,各种有机物料残留物的C/N趋于稳定:低C/N有机物料(猪粪)残留物的C/N值接近土壤腐殖质的C/N,约为10,已完成其腐殖化过程;高C/N有机物料残留物的C/N值处于适宜微生物活动的25左右,利于增加土壤有机质、培肥土壤.  相似文献   

14.
热带季节雨林与人工橡胶林土壤碳氮比较   总被引:3,自引:0,他引:3  
张敏  邹晓明 《应用生态学报》2009,20(5):1013-1019
选取我国西南部西双版纳地区的热带季节雨林和人工橡胶林为对象,比较了2006—2007年两种土地利用方式下凋落物输入、土壤总碳氮含量及活性碳、氮的季节性变化.结果表明:与热带季节雨林相比,橡胶林的地上年凋落物量较低,而地面凋落物残留量较高,反映了橡胶林凋落物分解速率(凋落物消失率常数值,K )较低;橡胶林凋落物和土壤的C/N比值较高,暗示了其林内有机物的可降解性较热带季节雨林弱;橡胶林表层土壤总有机碳、生物活性有机碳和微生物生物量碳含量只有热带季节雨林土壤的60%~70%,硝态氮含量较少,pH 值则比热带季节雨林土壤低1.1.说明热带季节雨林转变为橡胶林后,林内地上凋落物向土壤输入的碳、氮量减少,土壤碳、氮含量和有效性降低,并且土壤呈现酸化倾向.应制定合理的橡胶林土壤管理措施,阻止土壤质量的下降趋势,以维持橡胶林的生产可持续性.  相似文献   

15.
采用FACE(Free Air Carbon-dioxide Enrichment)技术,研究了不同N、P施肥水平下,水稻分蘖期、拔节期、抽穗期和成熟期根、茎、穗生长,C/N比、N、P含量及N、P吸收对大气CO2浓度升高的响应,结果表明,高CO2促进水稻茎、穗和根的生长,增加分蘖期叶干重,对拔节期、抽穗期的成熟期叶干重没有显著增加,降低茎、叶N含量;增加抽穗期穗N含量;降低成熟期穗N含量;对分蘖期根N含量影响不显著,而降低拔节期,抽穗期和成熟期根N含量,增加拔节期、抽穗期和成熟期叶P含量,对茎、穗、根P含量影响不显著,水稻各组织C含量变化不显著,C/N比增加,显著增加水稻地上部分P吸收;增加N吸收,但没有统计显著性,N、P施用对水稻各组织生物量没有显著影响,高N(HN)比低N(LN)增加组织中N含量,而不同P肥水平间未表现出明显差异,高N条件下高CO2增加水稻成熟期地下部分/地上部分比,文中还讨论了高CO2对N、P含量及地下部分/地上部分比的影响机制。  相似文献   

16.
Although it has been recognized that the adsorption of organics to clay and silt particles is an important determinant of the stability of organic matter in soils, no attempts have been made to quantify the amounts of C and N that can be preserved in this way in different soils. Our hypothesis is that the amounts of C and N that can be associated with clay and silt particles is limited. This study quantifies the relationships between soil texture and the maximum amounts of C and N that can be preserved in the soil by their association with clay and silt particles. To estimate the maximum amounts of C and N that can be associated with clay and silt particles we compared the amounts of clay- and silt-associated C and N in Dutch grassland soils with corresponding Dutch arable soils. Secondly, we compared the amounts of clay- and silt-associated C and N in the Dutch soils with clay and silt-associated C and N in uncultivated soils of temperate and tropical regions.We observed that although the Dutch arable soils contained less C and N than the corresponding grassland soils, the amounts of C and N associated with clay and silt particles was the same indicating that the amounts of C and N that can become associated with this fraction had reached a maximum. We also observed close positive relationships between the proportion of primary particles < 20 m in a soil and the amounts of C and N that were associated with this fraction in the top 10 cm of soils from both temperate and tropical regions. The observed relationships were assumed to estimate the capacity of a soil to preserve C and N by their association with clay and silt particles. The observed relationships did not seem to be affected by the dominant type of clay mineral. The only exception were Australian soils, which had on average more than two times lower amounts of C and N associated with clay and silt particles than other soils. This was probably due to the combination of low precipitation and high temperature leading to low inputs of organic C and N.The amount of C and N in the fraction > 20 m was not correlated with soil texture. Cultivation decreased the amount of C and N in the fraction > 20 m to a greater extent than in the fraction < 20 m, indicating that C and N associated with the fraction < 20 m is better protected against decomposition.The finding of a given soil having a maximum capacity to preserve organic C and N will improve our estimations of the amounts of C and N that can become stabilized in soils. It has important consequences for the contribution of different soils to serve as a sink or source for C and N in the long term.  相似文献   

17.
生活垃圾堆肥与园土基质草皮建植体系的生长参数比较   总被引:3,自引:0,他引:3  
对生活垃圾堆肥为基质无土草皮与园土基质草皮的相关生长参数进行了比较,结果表明,同种草坪植物垃圾堆肥基质与园土基质草皮相比,除早熟禾和匍茎剪股颖的须根数及高羊茅和黑麦草的单株地上净光合量外,其他生长指标差异不大(P>0.05),草皮绿度差异也不大.抗拉强度主要取决于草皮铺网的自身特性,各草皮抗拉强度约为10kg.4种草坪植物草皮根系与基质、铺网的固着状态相对优劣次序为:高羊茅>黑麦草>早熟禾>本特.草皮铺坪应用结果表明,2种基质草皮间存在着草种与基质、铺网的生态协同性差异.从草皮铺坪应用指标看,铺坪后草坪植物生长状况与草皮培植时生长状况密切相关,一般培植时生长状况好,则铺坪时生长状况也好.垃圾堆肥草皮铺坪后,具有较好的色泽效应,其他应用性能也较为理想.综合性能分析,以生活垃圾堆肥为基质的无土草皮性能符合草皮培植技术性能要求,有些性能还明显优于园土基质草皮.  相似文献   

18.
我国北方草原沙漠化过程中土壤碳、氮变化规律研究   总被引:14,自引:1,他引:13  
对内蒙古锡林郭勒盟多伦县境内75个样点土壤质地、全碳、全氮的测定和地上植被状况分析结果表明,草原沙漠化过程不同阶段的变化体现在土壤氮、碳、粘粒含量的有规律变化,土壤氮、碳含量减少、质地变粗;土壤氮、碳含量与粘粒含量间呈显著相关性,氮含量与粘粒含量间的相关系数(0.901)分别大于碳、氮含量间的相关系数(0.627)和碳含量与粘粒含量间的相关系数(0.642).土壤中粘粒含量显著减少.土壤中氮元素的衰减比碳元素明显;沙质草原沙漠化不同阶段的C/N比呈现增加的趋势.  相似文献   

19.
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0–10 cm mineral soil) by analysing data from 15 long-term (14–30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30–50 kg N ha−1 year−1) were always more efficient per unit of N than high application rates (50–200 kg N ha−1 year−1). Addition of a cumulative amount of N of 600–1800 kg N ha−1 resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg−1 (N added) (“N-use efficiency”), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg−1 (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg−1 (N) at C/N 35 and decreased again to about 20 kg (C) kg−1 (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40–50 kg (C) kg−1 (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3–4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg−1 (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha−1 year−1 higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 ± 1.0 (95% confidence interval) kg m−2 more tree C and 1.3 ± 0.5 kg m−2 more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70–80% of the difference in SOC can be explained by different N deposition.  相似文献   

20.
Field studies were conducted to assess the turnover and the leaching of nitrogen in arable soils of Lower Saxony (NW Germany). The mean surplus N (difference between N inputs by fertilization and N export by the yield; 146 field plots) from 1985–1988 amounted to 38 kg ha-1 yr-1 in fine textured (clay, loam, silt) and to 98 kg ha-1 yr-1 in coarse (sandy) soils. Leaching of nitrate calculated by a simple functional model for simulation of the N regime over the winter period (i.e. mineralization and leaching) was 16 kg ha-1 in the fine and 63 kg N ha-1 in coarse soils (mean values of the winter periods 1985–1988 from 256 plots).Before the 1960s, the depth of the Ap horizons rarely exceeded 25 cm in arable soils of the former FRG. During the last three decades, ploughing depth has increased to at least 35 cm. The mass balance calculations for total N after ploughing to 35 cm in loess soils of southern Lower Saxony (105 farm plots) yielded a mean increase in total N by about 900 kg ha-1 in 20 years. With respect to soil organic matter equilibria, N accumulation will continue for at least another 10 years on 67% of the examined farm plots. This study suggests that long term N immobilization is one of the most important sinks for nitrogen in arable soils of Germany. For simulation of the N dynamics over the growing season and for long time periods total nitrogen dynamics need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号