首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil nitrogen heterogeneity in a Dehesa ecosystem   总被引:1,自引:0,他引:1  
The C mineralization and N transformations during the decomposition of sunflower stalks (Helianthus annuus L.) and wheat straw (Triticum aestivum L.) with and without addition of (NH4)2SO4 (27.53 atom% 15N) were studied in a Vertisol. Soil samples were incubated under aerobic conditions for 224 days at 22 °C. The plant residues were added at a rate of 5.2 g kg-1 soil. Nitrogen was applied at a rate of 50.7 mg N kg-1 soil. Carbon dioxide emission and inorganic N content in soil were periodically determined. Gross N immobilization and remineralization were calculated on the basis of the isotopic dilution technique. At the end of the incubation period a 15N balance was established. Respectively, 68 and 45% of the applied residue-C mineralized from the sunflower stalks and wheat straw after 224 days. Both crop residues caused losses of up to 25% of added 15N after 224 days of incubation. These 15N losses were about three times larger than in the control soil, and were probably due to denitrification. The net immobilization of soil derived N following residue incorporation was largest in the case of wheat straw, depleting all soil inorganic N. In the wheat straw treatment with added (NH4)2SO4 soil inorganic N remained available, resulting in an enhanced initial C mineralization and N immobilization compared to the treatment without added N. In the case of the sunflower stalks, the high inorganic N content of the stalks suppressed the effects of N addition on C mineralization and N immobilization/mineralization. Gross N immobilization amounted to 31.9 and 28.2 mg N g-1 added C after 14 days for wheat straw and sunflower stalks, respectively. At the end of the incubation, about 35% of the newly immobilized N was remineralized in both plant residue treatments. Gross N immobilization plotted against decomposed C suggests that fairly uniform C-N relationships exist during the decomposition of divers C substrates. The results demonstrate that low fertilizer N use efficiencies may be expected in a wheat-sunflower cropping system with incorporation of crop residues, as the fertilizer N applied becomes largely immobilized in the soil organic fraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

3.
Thomsen  Ingrid K. 《Plant and Soil》1993,148(2):193-201
A 5-month laboratory incubation experiment was conducted to study the immobilization-mineralization of N in soil to which dried or composted 15N labelled ryegrass (Lolium italicum L.) had been added. Cellulose was added to dried ryegrass to give a C/N ratio similar to that of composted ryegrass. Exchangeable NH4 + and NO3 , HCl-hydrolyzable N forms, microbial biomass N, NaOH-soluble and insoluble N were monitored during incubation. Dried ryegrass brought about a significant increase in total and labelled exchangeable NH4 +, while a rapid immobilization and a subsequent slow release of exchangeable NH4 + was observed in soil with composted ryegrass, together with a resistance to degradation of the labelled humic substances. Compounds synthesized during the composting process and resistant to microbial decomposition probably caused an increase in the amino-acid fraction of soil. These findings suggest that composting can reduce the risk of N losses.  相似文献   

4.
Summary Laboratory tests were made on the effect of NaNO3 or (NH4)2CO3 on the dynamics of humification in the soil of oat straw tagged with N15. The mixture was incubated for 112 days, at constant temperature and moisture conditions. It was found that NH4-N accelerated the straw humifications more than NO3-N. Humification started directly after the straw was introduced into the soil. N15 derived from straw consituted a part of the forming humic compounds. Already after 14 days of incubation, the N15 of straw was found in all fractions of humic compounds. Mineralization accompanied humification. The added inorganic-N accelerated not only straw humification, but also the mineralization of forming humic compounds. This is why the added inorganic-N had no influence on the content of humic compounds. The decisive factor in the increase of humic and fulvic acids in the soil, was the straw. The inorganic N added to the straw, had no influence on the quality of humic acids formed in the soil.  相似文献   

5.
A pot experiment was conducted in a 14C-labelled atmosphere to study the influence of living plants on organic-N mineralization. The soil organic matter had been labelled, by means of a 200-days incubation, with 15N. The influence of the carbon input from the roots on the formation of microbial biomass was evaluated by using two different light intensities (I). Mineralization of 15N-labelled soil N was examined by following its fate in both the soil biomass and the plants. Less dry matter accumulated in shoots and roots at the lower light intensity. Furthermore, in all the plant-soil compartments examined, with the exception of rhizosphere respiration, the proportion of net assimilated 14C was lower in the low-I treatment than in the high-I treatment. The lower rates of 14C and 15N incorporation into the soil biomass were associated with less root-derived 14C. During the chamber period (14CO2-atmosphere), mineralized amounts of 15N (measured as plant uptake of 15N) were small and represented about 6.8 to 7.8% of the initial amount of organic 15N in the soil. Amounts of unlabelled N found in the plants, as a percentage of total soil N, were 2.5 to 3.3%. The low availability of labelled N to microorganisms was the result of its stabilization during the 210 days of soil incubation. Differences in carbon supply resulted in different rates of N mineralization which is consistent with the hypothesis that roots induce N mineralization. N mineralization was higher in the high-I treatment. On the other hand, the rate of mineralization of unlabelled stable soil N was lower than labelled soil 15N which was stabilized. The amounts of 15N mineralized in planted soil during the chamber period (43 days) which were comparable with those mineralized in unplanted soil incubated for 210 days, also suggested that living plants increased the turnover rate of soil organic matter.  相似文献   

6.
Abstract

The influence of soil fungi on soil organic carbon (OC) from surface residue was tested in outdoor plots in southern Ontario, Canada, 2004. Fungal hyphal length, soil aggregation, OC and light and heavy fractions of organic matter were compared with factors of plant growth (with or without oat [Avena sativa]) and surface residue (no residue, oat straw (low C:N) or corn (Zea mays) stalks (high C:N)) in a factorial arrangement. Significant increases were observed in soil OC from the oat plants, and from corn stalks compared to straw residue, in the growing season with very moist, high OC, sandy soil. In treatments with corn stalk residue, fungal hyphal length was increased with interaction from the oat plants and residue and was positively correlated with the heavy fraction organic matter along with soil OC. Fungal hyphae, plant roots and high C:N residue were all factors in soil OC increases.  相似文献   

7.
Summary The decomposition and humification of oat straw labelled with15N were followed in the soil during 80 days. The influence of NaNO3 and (NH4)2 SO4 on these processes were also investigated. It was ascertained that addition of NH4–N acted more efficiently than NO3–N on both the decomposition of straw and the mineralization of the organic nitrogen compounds of the soil. In the presence of NH4–N, straw15N predominated in humic acids, while in the presence of NO3–N it predominated in fulvic acids.The incorporation of straw15N into the humic compounds occurred in proportion to the progressing decomposition of straw. The greatest similarity in the proportions of soil-N and straw-15N in isolated fractions was ascertained after 80 days of incubation in the presence of NH4–N.  相似文献   

8.
Summary A pot experiment was conducted to study the transformations of organic and inorganic N in soil and its availability to maize plants. Inorganic N was in the form of15N labelled ammonium sulphate (As) and15N labelledSesbania aculeata (Sa), a legume, was used as organic N source. Plants utilized 20% of the N applied as As; presence of Sa reduced the uptake to 14%. Only 5% of the Sa-N was taken up by the plants and As had no effect on the availability of N from Sa. Losses of N from As were found to be 40% which were reduced to 20% in presence of Sa. Losses of N were also observed from Sa which increased in the presence of As. Application of As had no effect on the availability of soil or Sa-N. However, more As-N was transported into microbial biomass and humus components in the presence of Sa.Plants derived almost equal amounts of N from different sourcesi.e., soil, Sa and As. However, more As-N was transported into the shoots whereas the major portion of nitrogen in the roots was derived from Sa.  相似文献   

9.
Rhizodeposition, i.e. the release of carbon into the soil by growing roots, is an important part of the terrestrial carbon cycle. However thein situ nature and dynamics of root-derived carbon in the soil are still poorly understood. Here we made an investigation of the latter in laboratory experiments using13CO2 pulse chase labelling of wheat (Triticum aestivum L.). We analyzed the kinetics of13C-labelled carbon and more specially13C carbohydrates in the rhizosphere. Wheat seedlings-soil mesocosms were exposed to13CO2 for 5 hours in controlled chambers and sampled repeatedly during two weeks for13C/C analysis of organic carbon. After a two-step separation of the soil from the roots, the amount of total organic13C was determined by isotope ratio mass spectrometry as well as the amounts of13C in arabinose, fructose, fucose, glucose, galactose, mannose, rhamnose and xylose. The amount and isotopic ratio of monosaccharides were obtained by capillary gas chromatography coupled with isotope ratio mass spectrometry (GC/C/IRMS) after trimethyl-silyl derivatization. Two fractions were analyzed : total (hydrolysable) and soluble monomeric (water extractable) soil sugars. The amount of organic13C found in the soil, expressed as a percentage of the total photosynthetically fixed13C at the end of the labelling period, reached 16% in the day following labelling and stabilised at 9% after one week. We concluded that glucose under the form of polymers was the dominant moietie of rhizodeposits. Soluble glucose and fructose were also present. But after 2 days, these soluble sugars had disappeared. Forty percent of the root-derived carbon was in the form of neutral sugars, and exhibited a time-increasing signature of microbial sugars. The composition of rhizospheric sugars rapidly tended towards that of bulk soil organic matter.  相似文献   

10.
[Carbonyl-14C] methabenzthiazuron (MBT) was applied to an arid region soil at a rate of 5mg kg−1 soil to give a14C content of 2400 KB kg−1 soil. After 15 weeks of incubation at 22°C and 50% of the maximum water holding capacity of the soil, 7.2% of the applied14C was mineralized to14CO2. Where the soil was amended with wheat straw, total mineralization increased to 17.3%. Soil disturbance caused a significant increase while chloroform fumigation caused a significant decrease in the rate of14CO2 production, both from amended and unamended soils. These results suggest that MBT is degraded mainly through microbial co-metabolism. Wheat straw amendment resulted in increased transformation of MBT into soil humus. In unamended soil, a major portion of14C was recovered in fulvic acid and in fractions extracted with organic solvents. Recovery of14C in non-extractable bound residues (humins) increased as incubation progressed and seemed to be derived from the fulvic acid fraction, which showed a concomitant decrease. More than 99% of the residual14C in unamended soil consisted of unaltered MBT; the remainder occurred as 1-methyl-1 (benzthiazolyl) urea. In amended soil, a relatively higher percentage of the extractable14C was found in the metabolite. Small amounts of three unidentified14C-labelled compounds were also observed. In amended soil, disturbance caused a decrease in extractable-14C whereas fumigation caused a significant increase, as compared to the untreated control. The effects were more pronounced when the soils were reated at an early stage of incubation. In general, soil disturbance increased the availability of MBT for further transformations while chloroform fumigation decreased the process.  相似文献   

11.
Summary In a udic chromusterts the transformation of an initial application of15N-urea @ 80 kg N ha–1 to rice (Oryza sativa L.) in rice-wheat (R-W) and to wheat (Triticum aestivum L.) in wheat-rice (W-R) rotations was followed in 6 successive crops in each rotation. All rice crops were grown in irrigated wetland and wheat in irrigated upland conditions.The first wheat crop in W-R rotation utilized 22 kg fertilizer N ha–1 as compared to 19 kg by the corresponding rice crop in R-W rotation. But the latter absorbed more soil N than the former. About 69% of the total N uptake in rice was derived from mineralization of soil organic N as compared to 61% in wheat.The succeeding wheat crop in R-W rotation utilized 6.7% of the residual fertilizer N in the soil but the corresponding rice crop in W-R rotation only 2.2%. The higher utilization appeared to be related to a greater incorporation of labelled fertilizer N in mineral and hexosamine fractions of the soil N. After the second crop in each rotation, the average residual fertilizer N utilization in the next 4 crops ranged between 3 and 4%.The total recovery of15N-urea in all crops amounted to 21.7 and 24.3 kg N ha–1 in R-W and W-R rotation, respectively. At the end of the experiment, about 9 to 10 kg ha–1 of the applied labelled N was found in soil upto 60 cm depth. Most of the labelled soil N (69–76%) was located in the upper 0–20 cm soil layer indicating little movement to lower depths despite intensive cropping for 4 years.  相似文献   

12.
Interactions of water,mulch and nitrogen on sorghum in Niger   总被引:17,自引:0,他引:17  
Zaongo  C.G.L.  Wendt  C.W.  Lascano  R.J.  Juo  A.S.R. 《Plant and Soil》1997,190(1):119-126
We tested the hypothesis that plants only stimulate net mineralization of N when intense competition for N exists between plants and heterotrophs. Nitrogen mineralization in the soil used was insensitive to the range of moisture fluctuations that were inevitable during plant growth. Pots were planted to wheat (Triticum aestivum L.) or left unplanted and received no straw, straw added in one central layer, or straw added uniformly through the whole soil volume. Through the addition of15 N-labelled nitrate, initial soil inorganic N was increased to 17 g g–1 in unplanted treatments and to 17 g g–1 and 72 g g–1 in planted treatments. Straw addition increased microbial immobilization of labelled N (soil inorganic N at planting), but did not reduce net mineralization of unlabelled soil N (soil organic N at planting), indicating that straw decomposers immobilized N early in the growth period. Plant growth did not reduce immobilization of N by straw decomposers. Net mineralization of N was not affected by plant growth at the low rate of N addition, but was reduced at the high rate of N addition. We conclude that the influence of wheat growth on net mineralization of N depends on soil N availability, with reductions in net mineralization at high N levels due to increased immobilization.  相似文献   

13.
Ambus  Per  Jensen  Erik Steen 《Plant and Soil》1997,197(2):261-270
Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment 1: 15N-labelled ground (3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic15 N and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days for measuring gross N mineralization and denitrification.Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg-1 soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg-1 soil) than from cut barley (2.7 mg N kg-1 soil). Microbial biomass peaked at day 4 with the barley treatments and at day 14 with the cellulose+glucose whereafter the biomass leveled out at values 79 mg C kg-1 (ground), 104 (cut), and 242 (cellulose+glucose) higher than for the control soil. Microbial growth yields were similar for the two barley treatments, ca. 60 mg C g-1 substrate C added, which was lower than the 142 mg C g-1 C added with cellulose+glucose. This suggests that the 75% (w/w) holocelluloses and sugars contained with the barley material remained physically protected despite grinding. In Experiment 2 gross mineralization on day 3 was 4.8 mg N kg-1 d-1 with ground pea, twice as much as for all other treatments. On day 26 the treatment with ground barley had the greatest gross N mineralization. In static cores ground barley denitrified 11-fold more than did cut barley, whereas denitrification was similar for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue.We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long term, grinding the plant residues has no significant effect on N dynamics.  相似文献   

14.
Summary The availability and turnover in different soil fractions of residual N from leguminous plant material and inorganic fertilizer was studied in a pot culture experiment using wheat as a test crop. Plants utilized 64% of the residual fertilizer N and 20% of the residual legume N. 50–60% of the N taken up by plants was recovered in grain and 4–8% in roots. After harvesting wheat up to 35% and 38% of the residual legume N and fertilizer N, respectively was found in humic compounds. A loss of humus N derived from legume and fertilizer was found during wheat growth but the unlabelled N increased in this fraction. Biomass contained 6% and 8% of the residual legume and fertilizer N, respectively when both were available. The mineralizable component contained upto 28% of both the residual legume and residual fertilizer N. Only a small percentage of the soil N (3–4%) was observed in biomass whereas the mineralizable component accounted for 7–14% of the soil N. In this fraction legume derived N increased during wheat growth whereas unlabelled N increased in both the mineralizable component and microbial biomass. Some loss of N occurred from residual legume and fertilizer N. Nevertheless, a positive total N balance was observed and was attributed to the addition of unlabelled N in the soil-plant system by N2 fixation. The gain in N was equivalent to about 38% of the plant available N in the soil amended with leguminous material. The additional N was concentrated mainly in the mineralizable fraction and microbial biomass, although some addition was also noted in humus fractions.  相似文献   

15.
Wheat and maize were grown in a growth chamber with the atmospheric CO2 continuously labelled with 14C to study the translocation of assimilated carbon to the rhizosphere. Two different N levels in soil were applied. In maize 26–34% of the net assimilated 14C was translocated below ground, while in wheat higher values (40–58%) were found. However, due to the much higher shoot production in maize the total amount of carbon translocated below ground was similar to that of wheat. At high N relatively more of the C that was translocated to the root, was released into the soil due to increased root respiration and/or root exudation and subsequent microbial utilization and respiration. The evolution rate of unlabelled CO2 from the native soil organic matter decreased after about 25 days when wheat was grown at high N as compared to low N. This negative effect of high N in soil was not observed with maize.  相似文献   

16.
Hu  S.  van Bruggen  A.H.C.  Wakeman  R.J.  Grünwald  N.J. 《Plant and Soil》1997,195(1):43-52
Experiments were designed to examine effects of the soil microbial community, C and N availability on in vitro growth of Pythium ultimum and its infection of cotton seedlings by manipulating the stage of cellulose decomposition, size and activity of microbial populations, and N availability. In comparison to the untreated control (CONT), cellulose addition alone (CELL) reduced soil nitrate by 35–80 fold, but had no significant effect on soil ammonium. Soil microbial biomass C (SMBC) increased over 2 fold in 14 days following cellulose addition, but significantly decreased in the following 10 days due to N limitation. Addition of both cellulose and N (NCELL) resulted in sustained SMBC for 24 days and significantly reduced in vitro P. ultimum growth and disease incidence. In vitro growth of P. ultimum and disease severity were consistently reduced in the order: CONT > CELL > NCELL. In vitro growth of P. ultimum was lower in soils previously incubated for 24 days than in those incubated for 14 days, and was most closely correlated to cumulative soil CO2 evolution (CO2T). Correlations between P. ultimum growth rates and NO3-N or total available N were substantial (p < 0.05), but much less significant than those between the growth rates and SMBC, microbial activity measured as CO2 evolution rates or CO2T (p<0.0001). Addition of available N (NH4NO3) and C (glucose) just before the assays did not increase the in vitro growth of P. ultimum or disease severity on cotton seedlings, suggesting that time-dependent microbial processes or microbial metabolites significantly contributed to suppression of P. ultimum growth.  相似文献   

17.
Recous  Sylvie  Machet  Jean-Marie 《Plant and Soil》1999,206(2):137-149
Previous studies on the fate of fertiliser nitrogen applied to winter wheat in temperate climates have shown that nitrogen (N) applied early, at tillering for wheat, was less efficiently taken up than N applied later in the growth cycle. We examined the extent to which the soil microbial N immobilisation varied during the wheat spring growth cycle and how microbial immobilisation and plant uptake competed for nitrogen. We set up a pulse-15N labelled field experiment in which N was applied at eight development stages from tillering (beginning of March) to anthesis (mid-June). Each application was 50 kg N ha-1 as 15N labelled urea except for the first application which was 25 kg N ha-1. The distribution of fertiliser 15N in shoots, roots, mineral and organic soil N was examined by destructive sampling 7 and 14 days after each 15N pulse. The inorganic 15N pool was almost depleted by day 14. The N uptake efficiency increased with later applications from 45% at tillering to 65% at flowering. N immobilisation was rather constant at 13–16% of N applied, whatever the date of application. The increase in plant 15N uptake resulted in an increase in the total 15N recovery in the plant-soil system (15N in soil +15N in plant), suggesting that gaseous losses were lower at the later application dates.  相似文献   

18.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

19.
Conservation tillage in its version of permanent bed planting under zero-tillage with crop residue retention has been proposed as an alternative wheat production system for northwest Mexico. However, little is known about the dynamics of C and N in soils under wheat/maize on permanent beds (PB) where straw was burned, removed, partly removed or retained, as opposed to conventionally tilled beds (CTB) where straw was incorporated. We investigated the dynamics of soil C and N and normalized difference vegetative index (NDVI) crop values in zero-tilled PB and CTB after 26 successive maize and wheat crops. Organic C and total N were respectively, 1.15 and 1.17 times greater in PB with straw partly removed and with straw retained on the surface, than in CTB with straw incorporated. Organic C and total N were 1.10 times greater in soils with 300 kg N ha−1 added than in unfertilized soil. Cumulative production of CO2 was lower under CTB with straw incorporated than under PB treatments, and CO2 production increased with increments in inorganic fertilizer. The N-mineralization rate was 1.18 times greater than in unamended soils when 150 kg inorganic N ha−1 was applied, and 1.48 times greater when 300 kg inorganic N ha−1 was added. The N-mineralization rate was significantly (1.66 times) greater in PB where the straw was burned or retained on the surface than in CTB where the straw was incorporated, but significantly (1.25 times) lower than in PB with straw partly removed. The NDVI values reached a maximum 56 days after planting and decreased thereafter. The NDVI for unfertilized soil were similar for CTB with straw incorporated, PB with straw partly removed, and PB with straw retained on the surface, but significantly lower for PB with straw burned and PB with straw removed. In soils to which 150 or 300 kg N ha−1 was added, NDVI was significantly lower for PB with straw burned than for other treatments. Among other things, this suggests the utility of rotating maize or wheat with crops whose residues have lower C–N ratios, thus avoiding immobilization of large amounts of N for extended periods. PB with residue burning, however, is an unsustainable practice leading to low crop performance and soil and environmental degradation.  相似文献   

20.
选用15N同位素标记的新型回收塑料包膜控释肥和大颗粒尿素,采用池栽试验研究夏玉米-冬小麦轮作体系中肥料氮的去向及利用率。结果表明,整个轮作体系中,控释肥处理(PCU)作物吸收的肥料氮为241.03 kg/hm,高于尿素处理(Urea)的211.02 kg/hm。控释肥处理施用的肥料氮主要残留在0~40 cm土层,而尿素处理则残留在0~60 cm土层,控释肥延缓了肥料氮向土壤深层迁移的趋势。在夏玉米和冬小麦轮作体系中,控释肥处理的氮肥利用率(32.86%,32.47%)高于尿素处理(28.23%,30.16%)。在冬小麦季,控释肥处理损失率相比尿素处理从36.07% 降至28.75%,而夏玉米季,控释肥处理损失率相比尿素处理从37.17%降至29.50%。玉米季控释肥处理与尿素处理差异不显著,但在冬小麦季控释肥处理的产量显著高于尿素处理。因此,在玉米和小麦整个生长季,新型回收塑料包膜控释肥的养分释放与作物养分需求吻合,既提高氮肥利用率,也降低了肥料氮的损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号