首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidase oxidation of phenols   总被引:1,自引:0,他引:1  
Partially purified preparations of horseradish peroxidase were able to catalyze the effective transformation of such phenol compounds as phenol, o-chlorophenol, 2,4,6-trichlorophenol, pentachlorophenol (giving rise to the formation of polymer products insoluble in water), resorcinol, and thymol (giving rise to the formation of low-molecular-weight products). The following conditions were found to be optimal for peroxidase oxidation and provide the maximum extent of elimination of phenol compounds: temperature, 15-25 and 25-30 degrees C for phenol and chlorophenol compounds, respectively; molar ratio H2O2/phenol, 1:1; and transformation time, 1-3 h. Although effective transformation was observed within a broad range of pH, the efficiency of the process slightly increased at a pH from 6.0 to 7.5. It was suggested to carry out multiple peroxidase oxidations of phenols using partially purified peroxidase enclosed in a dialysis membrane bag placed into a solution of a phenol compound containing hydrogen peroxide.  相似文献   

2.
Bisphenol A was efficiently removed by the polymerization and precipitation method using Coprinus cinereus peroxidase. The removal efficiency was optimal between pH 9–10 and at 40 °C with a molar ratio of H2O2 to bisphenol A of about 2. To remove 100 mg bisphenol A l–1, peroxidase was required 5 U ml–1 at pH 7 and 25 °C and 3 U ml–1 at pH 10 and 40 °C.  相似文献   

3.
Peroxidase-catalyzed oxidation of o-phenylenediamine (PDA) is greatly activated with melamine (MA) in 15 mM phosphate–citrate buffer at pH 6.0–7.4 in a noncompetitive manner: k cat and K m increase in direct proportion to the MA concentration. An extent of the activation is quantitatively characterized with a coefficient (in M–1), which essentially increases along with the rise in pH from 6.0 to 7.4. MA acts as a nucleophilic catalyst in the oxidation process: it most likely affects the peroxidase active site from the distal position of heme. MA noncompetitively inhibits the peroxidase oxidation of PDA at pH 4.3, since it completely loses its nucleophilic properties in acidic medium. A rapid, highly accurate, and simple analytical test system based on the kinetics of melamine-activated oxidation of PDA is proposed for the quantitative determination of melamine within the concentration range of 10–4–10–3 M. This test system uses the spectrophotometric determination of the PDA oxidation product at 455 nm.  相似文献   

4.
The role of active site histidine residues in SCN oxidation by lacrimal gland peroxidase (LGP) has been probed after modification with diethylpyrocarbonate (DEPC). The enzyme is irreversibly inactivated following pseudo-first order kinetics with a second order rate constant of 0.26 M–1 sec–1 at 25°C. The pH dependent rate of inactivation shows an inflection point at 6.6 indicating histidine derivatization. The UV difference spectrum of the modified versus native enzyme shows a peak at 242 nm indicating formation of N-carbethoxyhistidine. Carbethoxyhistidine formation and associated inactivation are reversed by hydroxylamine indicating histidine modification. The stoichiometry of histidine modification and the extent of inactivation show that out of five histidine residues modified, modification of two residues inactivates the enzyme. Substrate protection with SCN during modification indicates that although one histidine is protected, it does not prevent inactivation. The spectroscopically detectable compound II formation is lost due to modification and is not evident after SCN protection. The data indicate that out of two histidines, one regulates compound I formation while the other one controls SCN binding. SCN protected enzyme is inactive due to loss of compound I formation. SCN binding studies by optical difference spectroscopy indicate that while the native enzyme binds SCN with the Kd of 15 mM, the modified enzyme shows very weak binding with the Kd of 660 mM. From the pH dependent binding of SCN, a plot of log Kd vs. pH shows a sigmoidal curve from which the involvement of an enzyme ionizable group of pKa 6.6 is ascertained and attributed to the histidine residue controlling SCN binding. LGP has thus two distinctly different essential histidine residues – one regulates compound I formation while the other one controls SCN binding.  相似文献   

5.
The removal of phenol by peroxidase-catalysed polymerization was examined using purified Coprinus cinereus peroxidase. The phenol removal efficiency increased with a decrease in the reaction temperature over the range of 0–70 °C, though only a trace of enzyme activity with 4-aminoantipyrine (4-AAP), phenol and hydrogen peroxide was found at 0 °C. The optimum pH value for phenol removal was 9.0, while the enzyme expressed maximum activity at pH 7.5 in the presence of 4-AAP, phenol and hydrogen peroxide. By measuring residual enzyme activity in the polymerizing reaction mixture, it was shown that enzyme inactivation by free radicals was more suppressed at 0 °C than at 40 °C and that the adsorption of the enzyme on the polymerized precipitate was more suppressed at pH 9.0 than that at pH 7.5.  相似文献   

6.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

7.
Catalytic antibodies with a metalloporphyrin cofactor represent a new generation of biocatalysts tailored for selective oxidations. Thus monoclonal antibodies, 3A3, were raised against microperoxidase 8 (MP8), and the corresponding 3A3-MP8 complexes were shown previously to have a high peroxidase activity. This paper shows that those complexes also catalyzed efficiently the nitration of phenol into 2- and 4-nitrophenol by NO2 in the presence of H2O2. pH dependence studies suggested that no amino acid from the antibody protein participated in the heterolytic cleavage of the O-O bond of H2O2. The inhibition of the reaction by cyanide and radical scavengers suggested a MP8-mediated peroxidase-like mechanism, involving the reduction of high-valent iron-oxo species by NO2 and phenol producing, respectively, NO2 · and phenoxy radicals, which then reacted to give nitrophenols. Finally, the antibody protein appears to have two major roles: (i) it protects MP8 toward oxidative degradations and (ii) it induces a regioselectivity of the reaction toward the formation of 2-nitrophenol.  相似文献   

8.
Escherichia coli Hmp is a homologue of Ralstonia eutropha FHP, the first reported bacterial flavohaemoglobin, and functions in NO detoxification. Photolysis of CO-ligated Hmp in the presence of oxygen gave a photodissociable oxy species with kon 2.82×107 M–1 s–1 and koff 4.49×103 s–1. The dissociation constant of the primary O2 compound was 160 M (25°C, pH 7.0). In order to detect superoxide formation, ferric horseradish peroxidase was used. Hmp formed the oxy compound within milliseconds, followed by formation of compound III, arising from superoxide formation. The rate of superoxide formation was independent of oxygen concentration between 0.05 and 0.7 mM oxygen, suggesting a Km <0.05 mM. During prolonged oxidation of NADH, the spectral signals of Hmp decayed and iron was released in a process prevented by superoxide dismutase or catalase. NADH oxidation by purified Hmp was characterised by progressive slowing of oxygen uptake. Inclusion of NO, superoxide dismutase or catalase during NADH oxidation partially protected oxygen uptake, consistent with the formation, in the absence of NO, of reactive oxygen species that inhibit Hmp function. The results are discussed in relation to the tight control exerted on Hmp synthesis in vivo.This paper is dedicated to Professor Dr Hans G. Schlegel, on the occasion of his 80th birthday.  相似文献   

9.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

10.
A soil bacterium capable of metabolizing organophosphorus compounds by reducing the P=S group in the molecules was taxonomically identified as Klebsiella sp. strain F51-1-2. The gene involved in the reduction of organophosphorus compounds was cloned from this strain by the shotgun technique, and the deduced protein (named AKR5F1) showed homology to members of the aldo-keto reductase (AKR) superfamily. The intact coding region for AKR5F1 was subcloned into vector pET28a and overexpressed in Escherichia coli BL21(DE3). Recombinant His6-tagged AKR5F1 was purified in one step using Ni-nitrilotriacetic acid affinity chromatography. Assays for cofactor specificity indicated that reductive transformation of organophosphorus compounds by the recombinant AKR5F1 specifically required NADH. The kinetic constants of the purified recombinant AKR5F1 toward six thion organophosphorus compounds were determined. For example, the Km and kcat values of reductive transformation of malathion by the purified recombinant AKR5F1 are 269.5 ± 47.0 μΜ and 25.7 ± 1.7 min−1, respectively. Furthermore, the reductive transformation of organophosphorus compounds can be largely explained by structural modeling.  相似文献   

11.
Bioremediation is considered a promising eco-efficient alternative for industrial wastewater treatment. Particular attention is currently being given to biological degradation of synthetic dyes and more specifically to colour removal by fungi. This work looks at the extracellular enzymatic system of strain Euc-1. Its ability to decolourize 14 xenobiotic azo dyes was evaluated and compared with the well-known species Phanerochaete chrysosporium. Strain Euc-1 is a mesophilic white-rot basidiomycete, the main secreted ligninolytic enzyme being laccase (0.38 U ml–1). Although low manganese-dependent peroxidase activity (0.05 U ml–1) was also detected, neither lignin peroxidase nor aryl alcohol oxidase could be found in batch culture. Optimum pH values of 4.0 and 5.0 were obtained in the laccase-catalysed oxidation of guaiacol and syringaldazine, respectively. Laccase activity increased with the temperature rise up to 50–60 °C and remarkable thermal stability was observed at 50 °C with a half-life of 12 h and no deactivation within the first 2 h. Solid-plate decolourization studies showed that basidiomycete Euc-1 decolourized 11 azo dyes whereas P. chrysosporium only two. Moreover, it is shown that purified laccase from basidiomycete Euc-1 efficiently decolourizes the azo dye acid red 88.  相似文献   

12.
When Euglena gracilis was grown in the heterotrophic condition with glucose and (NH4)2SO4 as the carbon and nitrogen source, a high cell yield (4.28–4.48 g l–1) was obtained and the culture pH decreased to 1.6–2. The biomass production in the heterotrophic culture was compared to those in the autotrophic and mixotrophic cultures. Autotrophic growth was 4.7–6.3% of the heterotrophic one, whereas about 15–19% higher growth was obtained in the mixotrophic culture. Moreover, good production of chlorophyll (39.4 mg l–1) and carotenoids (13.8 mg l–1) were attained in the mixotrophic culture, giving the highest fermenter productivity with respect to biomass as well as chlorophyll and carotenoids. Through an energetic analysis in the mixotrophic culture, it was estimated about 25–28% of the total ATP requirement is formed in the photochemical reactions. This resulted in an improved biomass production in the mixotrophic culture of E. gracilis.  相似文献   

13.
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process. Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998  相似文献   

14.
A xylose-fermenting bacterium of the family Enterobacteriaceae was isolated from olive mill wastewater. It converted xylose to ethanol with a yield of 0.19 g ethanol g–1 xylose. Although phenolic compounds normally inhibit pentose-utilizing microorganisms, this isolate was tolerant to phenol. Both the yield and the productivity of xylose fermentation decreased by 30% when phenol was added at a final concentration of 0.8 g phenol l–1. Xylose (23 g l–1) was totally fermented to ethanol (4.3 g l–1) within 48 h in the absence of phenol; however, in the presence of 0.8 g phenol l–1, only 3.3 g ethanol l–1 was obtained from the same starting concentration of xylose after 70 h.  相似文献   

15.
The specificity of the cell-envelope proteinase (CEPIII-type) from Lactococcus lactis subsp. cremoris AM1 in its action on bovine -casein was studied. A 4-h digest (pH 6.2, 15°C) of -casein was made with the purified proteinase. The pH-4.6 soluble fraction, representing more than 95% of the whole hydrolysate, was ultrafiltered to obtain a high-molecular-mass (HMM) and a low-molecular-mass (LMM) fraction, which were separately further purified by electrophoretic and chromatographic techniques. Isolated HMM and LMM products were identified by amino acid analysis, end-group determination and mass spectrometry. On-line HPLC/mass spectrometry was also used for the separation of an LMM peptide mixture and the identification of its components. The HMM products formed were the fragments 1–160, 1–151, 1–95 and 1–79 of -casein, whereas the main LMM products found were the 161–169 and 152–160 fragments. The enzyme specificity was concluded to be primarily directed towards the C-terminal region of the substrate molecule by cleavage of the 160–161 and 151–152 peptide bonds. Two minor LMM products were identified as the fragments 96–104 and 103–106, indicating additional cleavage at positions 102–103, 104–105 and 106–107 of the sequence. Also several peptide bonds within the 161–169 sequence were found to be subject to secondary cleavage by the proteinase. From electrophoretic and identification data it is concluded that the lactococaal CEPI, CEPIII and several mixed-type proteinases all act on the peptide bonds at positions 79–80 and 95–96. However, the C-terminal region of the -casein sequence is the exclusive target of the CEPIII-aand, to variable extents, of the mixed-type enzymes.  相似文献   

16.
A vector system has been developed to express isoenzyme A1 of sweet potato peroxidase (POD) and was introduced into Saccharomyces cerevisiae. The system contains the signal sequence of Aspergillus oryzae -amylase to facilitate the extracellular secretion of peroxidase under the control of constitutive glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter. In a batch culture using YNBDCA medium (yeast nitrogen base without amino acids 6.7 g l–1, Casamino acids 5 g l–1 and glucose 20 g l–1), the recombinant strain expressed the swpa1 gene giving a secretion yield of POD activity of ca. 90% of total expressed peroxidase. Supplementation with PMSF (0.05 mM) and Casamino acids (5 g/50 ml) increased extracellular POD activity to nearly 10 kU ml–1, equivalent to 1.5 kU g–1 cell dry wt. This is 9 fold higher than that obtained in medium without PMSF. From SDS-PAGE and native-PAGE analyses POD has an M r of 53 kDa.  相似文献   

17.
The effect of zinc compounds on osteoclast-like cell formation in rat marrow culture in vitro was investigated. The bone marrow cells were cultured for 7 days in -minimal essential medium containing a well-known bone resorbing hormone (1, 25-dihydroxyvitamin D3 and parathyroid hormone [1–34]). Osteoclast-like cell formation was estimated by staining for tartrateresistant acid phosphatase (TRACP), a marker enzyme of osteoclasts. The presence of 1, 25-dihydroxyvitamin D3 (10–8 M) or parathyroid hormone (PTH; 10–8 M) induced a remarkable increase in osteoclast-like multinucleated cells (MNC). These increases were clearly inhibited by the presence of zinc sulfate or zinc-chelating dipeptide (-alanyl-L-histidinato zinc; AHZ) in the concentration range of 10–7 to 10–5 M. The inhibitory effect was seen at the earlier stage of osteoclast-like MNC formation. However, zinc compounds (10–6 M) did not have an effect on PTH (10–8 M)-induced osteoclast-like cell formation in the presence of EGTA (5 × 10–4 M), dibucaine (10–5 M) or staurosporine (10–9 M). Moreover, when osteoclasts isolated from rat femoraldiaphyseal tissues were cultured for 24 h in the presence of zinc compounds (10–7 to 10–5 M), the compounds did not have an effect on cell numbers or lysosomal enzymes activity (acid phosphatase and -glucuronidase) in the cells. The present study clearly demonstrates that zinc compounds inhibit osteoclast-like cell formation at the earlier stage with differentiation of marrow cells.  相似文献   

18.
Two serine carboxypeptidases, MpiCP-1 and MpiCP-2, were purified to homogeneity from Monascus pilosus IFO 4480. MpiCP-1 is a homodimer with a native molecular mass of 125 kDa composed of two identical subunits of 61 kDa, while MpiCP-2 is a high mass homooligomer with a native molecular mass of 2,263 kDa composed of about 38 identical subunits of 59 kDa. This is unique among carboxypeptidases and distinguishes MpiCP-2 as the largest known carboxypeptidase. The two purified enzymes were both acidic glycoproteins. MpiCP-1 has an isoelectric point of 3.7 and a carbohydrate content of 11%, while for MpiCP-2 these values were 4.0 and 33%, respectively. The optimum pH and temperature were around 4.0 and 50°C for MpiCP-1, and 3.5 and 50°C for MpiCP-2. MpiCP-1 was stable over a broad range of pH between 2.0 and 8.0 at 37°C for 1 h, and up to 55°C for 15 min at pH 6.0, but MpiCP-2 was stable in a narrow range of pH between 5.5 and 6.5, and up to 50°C for 15 min at pH 6.0. Phenylmethylsulfonylfluoride strongly inhibited MpiCP-1 and completely inhibited MpiCP-2, suggesting that they are both serine carboxypeptidases. Of the substrates tested, benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu) was the best for both enzymes. The Km, Vmax, Kcat and Kcat/Km values of MpiCP-1 for Z-Tyr-Glu at pH 4.0 and 37°C were 1.33 mM, 1.49 mM min–1, 723 s–1 and 545 mM–1 s–1, and those of MpiCP-2 at pH 3.5 and 37°C were 1.55 mM, 1.54 mM min–1, 2,039 s–1 and 1,318 mM–1 s–1, respectively.  相似文献   

19.
Human plasma fibronectin contains two latent aspartic proteinases, FN-gelatinase and FN-lamininase. Both enzymes can be generated and activated in the presence of Ca2+ from the purified cathepsin D-produced 190-kDa fibronectin fragment. We investigated the proteolytic activity and cleavage specificity of both enzymes in a range of pH from 3.5 to 9.0 using the B chain of oxidized bovine insulin and chromogenic peptides as substrates. The inhibition of the enzymes by several natural inhibitors from human plasma was also tested. The specificities of FN-gelatinase and FN-lamininase are similar to other major acidic proteinases, including pepsin, renin, cathepsin D, and HIV-proteinases. Both enzymes mainly hydrolyze three peptide bonds in the oxidized insulin B chain, namely Glu–Ala (residues 13–14), Tyr–Leu (residues 16–17), and Phe–Phe (residues 24–25). For the peptide substrates H-Pro-Thr-Glu-Phe-p-nitro-Phe-Arg-Leu-OH and H-Phe-Gly-His-p-nitro-Phe-Phe-Val-Leu-OMe that were cleaved the respective values of k cat/K M were 105.1 and 11.8 mM–1 sec–1 for cleavage by FN-gelatinase, and 123.2 and 15.5 mM–1 sec–1 for cleavage by FN-lamininase. The maximal activities of both enzymes were observed in a range between pH 5.6 and 6.3 and they became inactivated at a pH value above 8.4. Both FN-gelatinase and FN-lamininase were efficiently inhibited by 2-macroglobulin.  相似文献   

20.
Volatile compounds exuded from axenically grown free-living nematodes were determined with gas chromatographic and mass spectrometric techniques. Carbon dioxide evolved from 5–200 nematodes was determined with an ampoule technique, whereas total ammonia (NH3 + NH4 +) and acetic and propionic acids were determined by direct injection of water in which nematodes had been suspended for 1–3 days. CO2 amounted to about 80 ng nematode–1 d–1, total ammonia to 1–5 ng, and acetic and propionic acids to 0.5 and 1.0 pg nematode–1 d–1.The effects of these compounds on induction of trap formation in the nematodetrapping fungusArthrobotrys oligospora were tested. CO2 inhibited trap formation at 5–10% CO2 in air (v/v), whereas ammonia stimulated trap formation in a certain concentration range. No effects of acetic and propionic acids were noted for the concentrations tested. The combined effects of these volatiles in the aqueous environment are discussed on the basis of stoichiometric considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号