首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

2.
Candida parapsilosis was grown for 59 h in a medium containing corn cob hydrolysate consisting of 50 g xylose l–1, 3.0 g glucose l–1, 2.0 g arabinose l–1, and 0.9 g acetic acid l–1. A biomass of 9.1 g l–1 was produced with 36 g xylitol l–1 and 2.5 g ethanol l–1. In a medium containing 50 g xylose l–1 instead of corn cob hydrolysate, the concentrations of cells, xylitol, and ethanol were 8.6 g l–1, 33 g l–1, and 0.2 g l–1, respectively. The differences between two cultures were due to the glucose and arabinose in the corn cob hydrolysate stimulating growth and the low concentration of acetic acid stimulating xylitol production.  相似文献   

3.
Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l–1). After 54 h, xylitol production from 30.5 g xylose l–1 reached 27.5 g l–1, resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g–1 and a productivity of 0.5 g l–1 h–1.  相似文献   

4.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

5.
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l–1 xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h–1 vs 0.05 h–1). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l–1 xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g–1 CDW h–1 to 0.017 g g–1 CDW h–1 and the yield from 0.09 g g–1 xylose to 0.14 g g–1 xylose, respectively.  相似文献   

6.
Fourteen assays were conducted to study the influence of different variables, namely xylose concentration, inoculum level, agitation speed and nutrient supplementation, on xylitol biosynthesis by Candida guilliermondii FTI 20037. The maximum predicted values for xylitol yield (0.65 g g–1) and xylitol productivity (0.66 g l–1 h–1) can be attained with rice straw hydrolysate containing 60 g xylose l–1 without supplementation of ammonium sulfate, calcium chloride and rice bran extract, using 5 g inoculum l–1, at 250 rpm. Xylose concentration and inoculum level were selected for further optimization studies.  相似文献   

7.
Acid hydrolysis of sugarcane bagasse for lactic acid production   总被引:3,自引:0,他引:3  
In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H2SO4) concentration (0.5–5%, v/v), reaction time (1–5 h) and incubation temperature (90–120 °C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 °C for 5 h, which the main components (in g l−1) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l−1 of xylose and 7 g l−1 of yeast extract. The main products (in g l−1) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.  相似文献   

8.
The production of xylitol by the yeast Candida guilliermondii was investigated in batch fermentations with aspenwood hemicellulose hydrolysate and compared with results obtained in semi-defined media with a mixture of glucose and xylose. The hemicellulose hydrolysate had to be supplemented by yeast extract and the maximum xylitol yield (0.8 g g–1) and productivity (0.6 g l–1 h–1) were reached by controlling oxygen input.  相似文献   

9.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

10.
Candida glycerinogenes is an aerobe which does not depend on sulphite for production of glycerol. With a sufficient O2 supply, up to 130 g glycerol l–1 was produced with 2.6 g acetic acid l–1 as by-product. However, with an insufficient O2 supply – with higher volumes of medium or at higher corn steep liquid concentrations – the glycerol concentration was lower because the by-products, ethanol, pyruvate and lactic acid, were produced in greater amounts, up to 45 g l–1, 4.3 g l–1, 1.6 g l–1, respectively, whereas, less acetic acid (0.6 g l–1) was produced. In addition, ethanol decreased to 0.4 g l–1 and the glycerol yield improved from 34 to 50% (w/w) by adding 50 g sulphite l–1, nevertheless, acetic acid increased to 7.8 g l–1.  相似文献   

11.
We have studied the ethanolic fermentation of D-xylose with Pachysolen tannophilus in batch cultures. We propose a model to predict variations in D-xylose consumed, and biomass and ethanol produced, in which we include parameters for the specific growth rate, for the consumption of D-xylose and production of ethanol either related or not to growth.The ideal initial pH for ethanol production turned out to be 4.5. At this pH value the net specific growth rate was 0.26 h–1, biomass yield was 0.16 g.g–1, the cell-maintenance coefficient was 0.073 g.g–1.h–1, the parameter for ethanol production non-related to growth was 0.064 g.g–1,h–1 and the maximum ethanol yield was 0.32 g.g–1.List of Symbols A c Carbon atomic weight - a d1/h Specific cell-maintenance rate defined in Eq. (8) - c Mass fraction of carbon in the biomass - E g/l Ethanol concentration - f x Correction factor defined in Eq. (13) - f x Correction factor defined in Eq. (13) - f xi Correction factor defined in Eq. (14) - k d1/h Death constant - M E Ethanol molecular weight - M s Xylose molecular weight - M xi Xylitol molecular weight - m g xylose/g biomass Maintenance coefficient for substrate - m dg xylose/g biomass Maintenance coefficient when k d - q Eg ethanol/g biomass. Specific ethanol production rate - s g/l Residual xylose concentration - s 0 g/l Initial xylose concentration - t h Time - x g/l Biomass concentration - x 0 g/l Initial biomass concentration - Y E/sg ethanol/g xylose Instantaneous ethanol yield - ¯Y E/sg ethanol/g xylose Mean ethanol yield - Y E s/T g ethanol/g xylose Theoretical ethanol yield - Y E s/* g ethanol/g xylose Corrected instantaneous ethanol yield - ¯Y E s/* g ethanol/g xylose Corrected mean ethanol yield - Y x/sg biomass/g xylose Biomass yield - ¯Y xi/sg xylitol/g xylose Mean xylitol yield Greek Letters g ethanol/g biomass Growth-associated product formation parameter - g ethanol/g biomass.h Non-growth-associated product formation parameter - dg ethanol/g biomass.h Non-growth-associated product formation parameter when k d0 - h Variable defined in Eq. (6) or Eq. (7) - 1/h Specific growth rate - m1/h Maximum specific growth rate  相似文献   

12.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

13.
d-Ribose, a five-carbon sugar, is used as a key intermediate for the production of various biomaterials, such as riboflavin and inosine monophosphate. A high d-ribose-producing Bacillus subtilis SPK1 strain was constructed by the chemical mutation of the transketolase-deficient strain, B. subtilis JY1. Batch fermentation of B. subtilis SPK1 with 20 g l–1 xylose and 20 g l–1 glucose resulted in 4.78 g l–1 dry cell mass, 23.0 g l–1d-ribose concentration, and 0.72 g l–1 h–1 productivity, corresponding to a 1.5- to 1.7-fold increase when compared with values for the parental strain. A late-exponential phase was chosen as the best point for switching to a fed-batch process. Optimized fed-batch fermentation of B. subtilis SPK1, feeding a mixture of 200 g l–1 xylose and 50 g l–1 glucose after the late-exponential phase reduced the residual xylose and glucose concentrations to less than 7.0 g l–1 and gave the best results of 46.6 g l–1d-ribose concentration and 0.88 g l–1 h–1 productivity which were 2.0- and 1.2-fold higher than the corresponding values in a simple batch fermentation.  相似文献   

14.
Poly--hydroxybutyrate was produced in shake cultures by Alcaligenes eutrophus H16 on fructose, xylose, and fumaric, itaconic, lactic and propionic acids in a three-stage process. The maximum polymer concentration of 6.9 g l–1 (69% of cell dry matter) was obtained with 20g l–1 of fructose with a volumetric productivity of about 0.22 g l–1 h–1 at 24h. Up to about 3 g l–1 (about 50% of cell dry matter) of polymer was also produced on lactic and propionic acids as the sole carbon source during the production phase. In multivatiate optimization employing an orthogonal 23-factorial central composite experimental design with fructose as the substrate in a single-stage process, the optimal initial fructose concentration decreased from 35 g l–1 to 24 g l–1 when the incubation time was increased from about 35 h to 96 h. The optimal shaking speed range was 90–113 rpm. Correspondence to: S. Linko  相似文献   

15.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

16.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

17.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

18.
Summary Fed-batch fermentations ofClostridium thermohydrosulfuricum are carried out using medium rich in nitrogen source and with glucose as growth limiting factor. The ethanol/lactate yield increases as the specific growth rate and specific rate of consumption of glucose diminish. Under the experimental conditions chosen here this yield attained 3.66 moles. mole–1 with a maximal ethanol concentration of 12 g.l–1. In batch fermentation, the maximum concentration of ethanol did not exceed 8 g.l–1, independent of the concentration in glucose or nitrogen source applied.  相似文献   

19.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

20.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号