首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There are reports that secreted factor(s) are involved in prespore cell differentiation in Dictyostelium discoideum, but the structures and functions of the various factors have not been elucidated. Previously, we described two prespore cell‐inducing factors in conditioned medium; one was a glycoprotein named prespore cell‐inducing factor (ψ factor, or PSI‐1), and the other, a heat stable dialyzable factor(s). In the present paper, we purified and characterized the most potent prespore cell‐inducing activity in dialysates. The factor began to be secreted after the onset of starvation and stopped being secreted once the cells had aggregated, which was earlier than the onset of the ψ factor gene expression. In addition, unlike ψ factor, its secretion did not appear to depend on activation of protein kinase A. Interestingly, the purified factor not only induced prespore cell specific genes such as pspA and cotC but also a prestalk‐cell specific gene, ecmB in vitro. The purified factor is tentatively designated polyketide‐like factor (PLF), because it seems to be a novel polyketide with 208 Da. Half maximal induction of prespore cell was obtained with 26 nmol/L of PLF. We propose that PLF plays a key role in the acquisition of differentiation commitment, before the ψ factor induces specifically prespore cell differentiation.  相似文献   

2.
It is well known that interconversion between prestalk and prespore cells occurs in 3-dimensional (3–D) isolates of Dictyostelium. The present work was undertaken to examine whether or not the interconversion occurs even in monolayer sheets. The results suggested that in monolayer sheets of either prespore or prestalk cells, the interconversion does not occur. Furthermore, effects of cAMP were examined in relation to the formation or loss of prespore vesicles (PSVs). In monolayer sheets, prespore cells retain their PSVs in the presence of cAMP, though they lose them in its absence. In 3–D masses, however, cAMP induces the conversion into stalk cells, stimulating PSV loss. In the case of prestalk cells, cAMP induces the maturation of prestalk cells to stalk cells in 3–D masses, but it does not induce stalk differentiation in monolayer sheets.
8-Bromo cAMP stimulates the maturation of prespore and prestalk cells into spore and stalk cells, respectively. However, the vegetative and the aggregative cells remain amoeboid even in its presence. These observations suggest that 8-bromo cAMP stimulates the maturation rather than inducing prespore and prestalk differentiation.  相似文献   

3.
Six monoclonal antibodies were isolated which react with common antigens shared by multiple glycoconjugate species in the cellular slime mold Dictyostelium discoideum. Based on competition of antibody binding by glycopeptides and simple sugars, and inhibition of antibody binding by antigen pretreatment with Na periodate, it is argued that at least five of the six antibodies recognize epitopes which contain carbohydrate. These epitopes are consequently referred to as glycoantigens (GAs).Three of the GAs are expressed during growth and throughout the developmental cycle, but are eventually enriched in prestalk and stalk cells. The remaining three are expressed only during and/or after aggregation and are exclusively expressed or highly enriched in prespore cells and spores. These conclusions are derived from Western blot immunoanalysis of purified cell types, immunofluorescence, and EM immunocytochemistry.The two GAs found only in prespore cells appear to be exclusively enclosed within prespore vesicles. The third GA of this type, which is only enriched in prespore cells compared to prestalk cells, is also found in other vesicle types as well as on the cell surface.Two of the GAs enriched in prestalk cells are initially found in all cells of the slug. They are undetectable in spores and prominent in stalk cells. The third GA, though found in the interiors of both prestalk and prespore cells, is enriched on the cell surface of prestalk cells.The chief characteristics of expression of four of these GAs are conserved in the related species D. mucoroides. This species is characterized by continuous trans differentiation of prespore cells into prestalk cells. This shows that the prespore cells maintain specific mechanisms for turning over their cell type specific GAs and that prestalk cells express a specific mechanism for inducing at least one of their cell-type specific GAs.These observations identify specific carbohydrate structures (as GAs) whose synthesis, subsequent localization and turnover are developmentally regulated. The exclusive association of two GAs with prespore vesicles identifies these GAs as markers for this organelle and raises questions regarding the functional significance of this association. The restricted cell surface localization of the other four GAs, together with data from cell adhesion studies, suggest the possibility of a potential role for these GAs in intercellular recognition leading to cell sorting.This paper is dedicated to the memory of the late Daniel McMahon.  相似文献   

4.
5.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

6.
It has been shown that, in Dictyostelium discoideum, conversion of prestalk cells to prespore cells in suspension cultures is inhibited by coexisting prespore cells. To examine whether the inhibition of conversion requires direct cell contact or is mediated by substances secreted by the cells, prestalk cells and prespore cells were incubated in shaken suspension, separated from each other by a dialysis membrane, and conversion of the prestalk cells to prespore cells scored after 24 h. Prestalk-to-prespore conversion was significantly inhibited if the density of the prespore cells was sufficiently high. In contrast, prestalk cells had little influence on prestalk-to-prespore conversion. Media conditioned by prespore cells, but not by prestalk cells, also inhibited the conversion of prestalk cells. Adenosine, propionate, diethylstilboestrol and differentiation inducing factor (DIF), all of which are known to influence the prestalk/prespore differentiation, were examined for their effects on prestalk-to-prespore conversion. Among these, all except adenosine significantly inhibited the conversion. Based on these results, possible mechanisms for maintenance of the constant cell-type ratio in D. discoideum slugs were discussed.  相似文献   

7.
8.
Wang B  Kuspa A 《Eukaryotic cell》2002,1(1):126-136
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB pkaR cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.  相似文献   

9.
In Dictyostelium discoideum, several G proteins are known to mediate the transduction of signals that direct chemotactic movement and regulate developmental morphogenesis. The G protein alpha subunit encoded by the Galpha4 gene has been previously shown to be required for chemotactic responses to folic acid, proper developmental morphogenesis, and spore production. In this study, cells overexpressing the wild type Galpha4 gene, due to high copy gene dosage (Galpha4HC), were found to be defective in the ability to form the anterior prestalk cell region, express prespore- and prestalk-cell specific genes, and undergo spore formation. In chimeric organisms, Galpha4HC prespore cell-specific gene expression and spore production were rescued by the presence of wild-type cells, indicating that prespore cell development in Galpha4HC cells is limited by the absence of an intercellular signal. Transplanted wild-type tips were sufficient to rescue Galpha4HC prespore cell development, suggesting that the rescuing signal originates from the anterior prestalk cells. However, the deficiencies in prestalk-specific gene expression were not rescued in the chimeric organisms. Furthermore, Galpha4HC cells were localized to the prespore region of these chimeric organisms and completely excluded from the anterior prestalk region, suggesting that the Galpha4 subunit functions cell-autonomously to prevent anterior prestalk cell development. The presence of exogenous folic acid during vegetative growth and development delayed anterior prestalk cell development in wild-type but not galpha4 null mutant aggregates, indicating that folic acid can inhibit cell-type-specific differentiation by stimulation of the Galpha4-mediated signal transduction pathway. The results of this study suggest that Galpha4-mediated signals can regulate cell-type-specific differentiation by promoting prespore cell development and inhibiting anterior prestalk-cell development.  相似文献   

10.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

11.
12.
13.
A high calcium concentration is known to induce stalk differentiation of the cellular slime mold D. discoideum. Therefore, the change in the calcium content of this organism during differentiation was studied and found to vary during development, more calcium being found in the anterior prestalk cells of the pseudoplasmodium (slug) than in the posterior prespore cells. It is concluded from the results that calcium is of importance in the cell differentiation of this organism and particularly in stalk formation.  相似文献   

14.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

15.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

16.
Changes in fine structures during the development of the cellular slime molds D. discoideum and D. mucoroides were studied, with emphasis on the regional differentiation between the prestalk and prespore cells of the slug. Cells in the prestalk region were in closer contact than those in the prespore region. Some differences were also noticed in the structure of plasma membrane between the two types of cells. An endoplasmic reticulum, vesicle, autophagic vacuole, and cytoplasmic fibril were found more abundantly in the prestalk cell than in the prespore cell. In the prespore cells there were observed a number of prespore specific vacuoles of ca. 0.6 μ diameter which consist of membraneous and fibrous structures. The vacuole was never found in the prestalk cells, and was a sole structure that existed only in one of the two types of cells. A possible function of such a vacuole was discussed in relation to spore differentiation. No differences in structure and distribution of mitochondria and crystal bodies were noticed between the prestalk and prespore cells, although these structures underwent considerable changes during the development. The nucleolus underwent considerable structual differentiation between the prestalk and prespore cells as well as during the course of development.  相似文献   

17.
We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.  相似文献   

18.
A novel developmental gene, yelA, has been found that plays an essential role in regulating terminal differentiation of Dictyostelium discoideum. Strains in which yelA is disrupted by plasmid insertion are arrested at the tight mound stage but accumulate the bright yellow pigment characteristic of mature sori. Although these mutant strains do not form fruiting bodies, many of the cells encapsulate within the mounds. Sporulation occurs about 6 hours earlier in yelA cells than in wild-type cells, accompanied by precocious expression of a prespore gene, spiA. However, the spores are defective and lose viability over a period of several hours. Unencapsulated cells also die unless they are dissociated from the mounds and shaken in suspension. The yelA gene was isolated by plasmid rescue and found to encode a protein of 102 kDa in which the N-terminal sequence shows significant similarity to domains found in the eIF-4G subunits of the translational initiation complex eIF-4F. In wild-type cells yelA mRNA first accumulates at 8 hours of development and is maintained in both prespore and prestalk cells until culmination when it is found only is stalk cells. Mutations in yelA can partially suppress the block to sporulation in mutant strains in which either of the prestalk genes tagB or tagC is disrupted such that an encapsulation signal is not produced. It appears that premature encapsulation is normally inhibited by YelA until a signal is received from prestalk cells during culmination. Dev. Genet. 20:307–319, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
20.
细胞色素c在细胞凋亡中发挥着重要的作用,其作用机理在高等真核生物及低等真核生物酵母中已经比较清楚,但在盘基网柄菌(Dictyostelium discoideum)中的作用却没有相关报道.所以我们用western blot和实时荧光定量PCR的方法分别测定了盘基网柄菌前柄细胞和前孢子细胞中细胞色素c的含量及表达量的变化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号