首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Helicobacter pylori vacuolating cytotoxin (VacA) intoxicates mammalian cells resulting in reduction of mitochondrial transmembrane potential (Delta Psi m reduction) and cytochrome c release, two events consistent with the modulation of mitochondrial membrane permeability. We now demonstrate that the entry of VacA into cells and the capacity of VacA to form anion-selective channels are both essential for Delta Psi m reduction and cytochrome c release. Subsequent to cell entry, a substantial fraction of VacA localizes to the mitochondria. Neither Delta Psi m reduction nor cytochrome c release within VacA-intoxicated cells requires cellular caspase activity. Moreover, VacA cellular activity is not sensitive to cyclosporin A, suggesting that VacA does not induce the mitochondrial permeability transition as a mechanism for Delta Psi m reduction and cytochrome c release. Time-course and dose-response studies indicate that Delta Psi m reduction occurs substantially before and at lower concentrations of VacA than cytochrome c release. Collectively, these results support a model that VacA enters mammalian cells, localizes to the mitochondria, and modulates mitochondrial membrane permeability by a mechanism dependent on toxin channel activity ultimately resulting in cytochrome c release. This model represents a novel mechanism for regulation of a mitochondrial-dependent apoptosis pathway by a bacterial toxin.  相似文献   

2.
Mitochondria play a central role in apoptosis through release of cytochrome c and activation of caspases. In the present study, we showed that, in Jurkat human T cells, camptothecin-induced apoptosis is preceded by (i) an increase in cytochrome c and subunit IV of cytochrome c oxidase (COX IV) levels in mitochondria; and (ii) an elevation of the mitochondrial membrane potential (Delta(Psi)m). These events are followed by cytochrome c release into the cytosol, cytochrome c and COX IV depletion from mitochondria, externalization of phosphatidylserine (PS), disruption of Delta(Psi)m, caspase activation, poly(ADP-ribose)polymerase cleavage and DNA fragmentation. The pan-caspase inhibitor z-VAD.fmk blocked camptothecin-induced PS externalization, disruption of Delta(Psi)m and DNA fragmentation, suggesting that these events are mediated by caspase activation. In contrast, z-VAD did not prevent cytochrome c release, despite preventing cytochrome c and COX IV depletion from mitochondria. Together, these data suggest that mitochondrial cytochrome c and COX IV enrichment are early events preceding the onset of apoptosis and that cytochrome c release is upstream of caspase activation and loss of Delta(Psi)m. Furthermore, prevention by z-VAD of cytochrome c and COX IV depletion in mitochondria suggests the possibility that a caspase-like activity in mitochondria is involved in the proteolytic depletion of respiratory chain proteins. Activation of this activity may play an important role in drug-induced apoptosis.  相似文献   

3.
During apoptosis, the permeabilization of the mitochondrial outer membrane allows the release of cytochrome c, which induces caspase activation to orchestrate the death of the cell. Mitochondria rapidly lose their transmembrane potential (Delta Psi m) and generate reactive oxygen species (ROS), both of which are likely to contribute to the dismantling of the cell. Here we show that both the rapid loss of Delta Psi m and the generation of ROS are due to the effects of activated caspases on mitochondrial electron transport complexes I and II. Caspase-3 disrupts oxygen consumption induced by complex I and II substrates but not that induced by electron transfer to complex IV. Similarly, Delta Psi m generated in the presence of complex I or II substrates is disrupted by caspase-3, and ROS are produced. Complex III activity measured by cytochrome c reduction remains intact after caspase-3 treatment. In apoptotic cells, electron transport and oxygen consumption that depends on complex I or II was disrupted in a caspase-dependent manner. Our results indicate that after cytochrome c release the activation of caspases feeds back on the permeabilized mitochondria to damage mitochondrial function (loss of Delta Psi m) and generate ROS through effects of caspases on complex I and II in the electron transport chain.  相似文献   

4.
A human milk fraction containing multimeric alpha-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of alpha-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of alpha-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (Delta Psi(m)), mitochondrial swelling and the release of cytochrome c. These changes were Ca(2+)-dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of Delta Psi(m), indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human alpha-lactalbumin made lethal to tumour cells), which is native alpha-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of alpha-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death.  相似文献   

5.
CTLs kill targets by inducing them to die through apoptosis. A number of morphological and biochemical events are now recognized as characteristic features of the apoptotic program. Among these, the disruption of the inner mitochondrial transmembrane potential (Delta Psi m) and the release of cytochrome c into the cytoplasm appear to be early events in many systems, leading to the activation of caspase-3 and, subsequently, nuclear apoptosis. We show here that, in Jurkat targets treated in vitro with purified granzyme B and perforin or granzyme B and adenovirus, Delta Psi m collapse, reactive oxygen species production, and cytochrome c release from mitochondria were observed. Loss of Delta Psi m was also detected in an in vivo system where green fluorescent protein-expressing targets were attacked by a cytotoxic T cell line that kills predominantly through the granzyme pathway. DNA fragmentation, phosphatidylserine externalization, and reactive oxygen species production were inhibited in the presence of the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk) in our in vitro system. Importantly, in either the in vitro or in vivo systems, these inhibitors at concentrations up to 100 microM did not prevent Delta Psi m collapse. In addition, cytochrome c release was observed in the in vitro system in the absence or presence of zVAD-fmk. Thus the granzyme B-dependent killing pathway in Jurkat targets involves mitochondrial alterations that occur independently of caspases.  相似文献   

6.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

7.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

8.
The relationship is investigated between mitochondrial membrane potential (Delta Psi(M)), respiration and cytochrome c (cyt c) release in single neural bcl-2 transfected cells (GT1-7bcl-2) or GT1-7puro cells during apoptosis induced by staurosporine (STS). Bcl-2 inhibited the mitochondrial release of cyt c and apoptosis. Three different cell responses to STS were identified in GT1-7puro cells: (i) neither Delta Psi(M) nor cyt c were significantly affected; (ii) a decrease in Delta Psi(M) was accompanied by a complete release of cyt c; or (iii) cyt c release occurred independently of a loss of Delta Psi(M). The endogenous inner membrane proton leak of the in situ mitochondria, monitored by respiration in the presence of oligomycin, was increased by STS by 92% in puro cells, but by only 23% in bcl-2 cells. STS decreased respiratory capacity, in the presence of protonophore, by 31% in puro cells and by 20% in bcl-2 cells. In the absence of STS, oligomycin hyperpolarized mitochondria within both puro and bcl-2-transfected cells, indicating that the organelles were net generators of ATP. However after 15 h exposure to STS oligomycin rapidly collapsed residual mitochondrial polarization in the puro cells, indicating that Delta Psi(M) had been maintained by ATP synthase reversal. bcl-2 cells in contrast, maintained Delta Psi(M) until protonophore was added. These results indicate that the maintenance of Delta Psi(M) following release of cyt c may be a consequence of ATP synthase reversal and cytoplasmic ATP hydrolysis in STS-treated GT1-7 cells.  相似文献   

9.
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage is amplified in iPLA(2)beta overexpressing INS-1 cells (OE), relative to empty vector-transfected cells, and is suppressed by iPLA(2)beta inhibition. ER stress also led to the release of cytochrome c and Smac and, unexpectedly, their accumulation in the cytosol is amplified in OE cells. These findings raise the likelihood that iPLA(2)beta participates in ER stress-induced apoptosis by activating the intrinsic apoptotic pathway. Consistent with this possibility, we find that ER stress promotes iPLA(2)beta accumulation in the mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial membrane potential (Delta Psi) in INS-1 cells and that these changes are amplified in OE cells. ER stress also led to greater ceramide generation in ER and mitochondria fractions of OE cells. Exposure to ceramide alone induces loss in Delta Psi and apoptosis and these are suppressed by forskolin. ER stress-induced mitochondrial dysfunction and apoptosis are also inhibited by forskolin, as well as by inactivation of iPLA(2)beta or NSMase, suggesting that iPLA(2)beta-mediated generation of ceramides via sphingomyelin hydrolysis during ER stress affect the mitochondria. In support, inhibition of iPLA(2)beta or NSMase prevents cytochrome c release. Collectively, our findings indicate that the iPLA(2)beta-ceramide axis plays a critical role in activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress.  相似文献   

10.
Tumour necrosis factor alpha (TNF) cytotoxicity is mediated, at least in part, by oxidative stress. One of the post-receptor events shortly after the addition of TNF is the generation of the superoxide anion (O2-*). In the present study, we attempted to examine the role of O2-* in the regulation of mitochondrial membrane potential (Delta(Psi)m) and the release of cytochrome c (cyto c) in L929 cells after stimulation with TNF. Challenge of cells with TNF (50 ng/ml) resulted in an early (30 min after the addition of TNF) increase in the production of O2-*. The use of mitochondrial electron transport chain inhibitors such as antimycin A and rotenone could, respectively, potentiate or suppress the TNF-mediated release of O2-* and cytotoxicity. TNF also induced a late (>3 h after the addition of TNF) depolarization in the Delta(Psi)m. Reduction in the release of O2-* by rotenone (50 microM) or thenoyltrifluoroacetone (250 microM) suppressed both the TNF-mediated Delta(Psi)m depolarization and cyto c release. However, increase in the production of O2-* by antimycin A (25 microM) only slightly enhanced the TNF effect in altering the Delta(Psi)m and the release of cyto c. Treating cells with antimycin A alone could not induce a reduction in Delta(Psi)m nor a release of cyto c. Taken together, our results indicate that TNF induced damage in mitochondria in L929 cells. Our data also show that an increase in the production of O2-* was important in the TNF cytotoxicity, but was not sufficient to mimic the action of TNF.  相似文献   

11.
In the present study we show that N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide), and, to a much lesser extent, C2-dihydroceramide induce cytochrome c (cyto c) release from isolated rat liver mitochondria. Ceramide-induced cyto c release is prevented by preincubation of mitochondria with a low concentration (40 nM) of Bcl-2. The release takes place when cyto c is oxidized but not when it is reduced. Upon cyto c loss, mitochondrial oxygen consumption, mitochondrial transmembrane potential (Delta Psi), and Ca2+ retention are diminished. Incubation with Bcl-2 prevents, and addition of cyto c reverses the alteration of these mitochondrial functions. In ATP-energized mitochondria, ceramides do not alter Delta Psi, neither when cyto c is oxidized nor when it is reduced, ruling out a nonspecific disturbance by ceramides of mitochondrial membrane integrity. Furthermore, ceramides decrease the reducibility of cyto c. We conclude that the apoptogenic properties of ceramides are in part mediated via their interaction with mitochondrial cyto c followed by its release and that the redox state of cyto c influences its detachment by ceramide from the inner mitochondrial membrane.  相似文献   

12.
During etoposide-induced apoptosis in HL-60 cells, cytochrome c release was associated with mitochondrial swelling caused by increased mitochondrial potassium uptake. The mitochondrial permeability transition was also observed; however, it was not the primary cause of mitochondrial swelling. Potassium uptake and swelling of mitochondria were blocked by bcl-2 overexpression. As a result, cytochrome c release was reduced, and apoptosis delayed. Residual cytochrome c release in the absence of swelling in bcl-2 expressing cells could be due to observed Bax translocation into mitochondria. This study suggests several novel aspects of apoptotic signaling: (1) potassium related swelling of mitochondria; (2) inhibition of mitochondrial potassium uptake by bcl-2; (3) co-existence within one system of multiple mechanisms of cytochrome c release: mitochondrial swelling and swelling-independent permeabilization of the outer mitochondrial membrane.  相似文献   

13.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

14.
Neuronal NMB cells were used to determine changes in gene expression upon treatment with dopamine. Twelve differentially expressed cDNAs were identified and cloned, one of them having 99.4% sequence homology with isoform 2 of a voltage-dependent anion channel (VDAC-2). The known role of VDAC, a mitochondrial outer-membrane protein, in transport of anions, pore formation, and release of cytochrome C prompted us to investigate the possible role of VDAC gene family in dopamine-induced apoptosis. Semi-quantitative PCR analysis indicated that expression of the three VDAC isoforms was reduced by dopamine. Immunoblotting with anti-VDAC antibodies detected two VDAC protein bands of 33 and 34 kDa. Dopamine decreased differentially the immunoreactivity of the 34 kDa protein. Whether the decrease in VDAC expression influence the mitochondrial membrane potential (Delta(Psi)(m)) was determined with the dye Rhodamine-123. Dopamine indeed decreased the mitochondrial Delta(Psi)(m), but the maximum effect was observed within 3 h, prior to the decrease in VDAC mRNA or protein levels. Cyclosporin A, a blocker of the mitochondrial pore complex, prevented the decrease in Delta(Psi)(m), but did not rescue the cells from dopamine toxicity. To elucidate possible involvement of protease caspases in dopamine-induced apoptosis, the effect of the caspase inhibitor z-Val-Ala-Asp(Ome)-FMK (zVAD) was determined. zVAD decreased dopamine toxicity, yet it did not rescue the mitochondrial Delta(Psi)(m) drop. Dopamine also decreased ATP levels. Finally, transfection of NMB cells with pcDNA-VDAC decreased the cytotoxic effect of dopamine. These findings are in agreement with the notion that the mitochondria, and VDAC, are important participants in dopamine-induced apoptosis.  相似文献   

15.
BACKGROUND: Apoptosis is a complex phenomenon during which several events occur. A growing interest exists on the role and functionality of mitochondria during this type of cell death. The responsibility of modifications in mitochondrial membrane potential (Delta Psi) in triggering apoptosis is under investigation. METHODS: We evaluated Delta Psi changes in HL60 cells treated with staurosporine (STS). Flow cytometry and confocal microscopy have been used to analyze samples stained with two Delta Psi-sensitive probes, JC-1 and MitoTrackertrade mark Red CMXRos. RESULTS: At the cellular level, we found heterogeneic behavior. Indeed, after STS treatment, some cells displayed typical markers of apoptosis and a collapse in Delta Psi. Others were apoptotic with no changes in Delta Psi, others changed Delta Psi without being apoptotic, and others were healthy. The same heterogeneic response to STS was found at the single organelle level. In a given cell, some mitochondria were depolarized whereas others were not. CONCLUSION: In this model of apoptosis, changes in Delta Psi can be different among cells of the same type and among different organelles of the same cell. The collapse in Delta Psi is thus a heterogeneic phenomenon that seems to be an ancillary event following the irreversible phase of the apoptotic process.  相似文献   

16.
Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (Delta Psi(m)), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 micromol choline x 48 hrs), cells in CD medium (5 micromol choline) were less sensitive to EGF-induced (0-300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial Delta Psi(m), and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes.  相似文献   

17.
Alkylphosphocholines (APC) are candidate anticancer agents. We here report that APC induce the formation of large vacuoles and typical features of apoptosis in human glioma cell lines, but not in immortalized astrocytes. APC promote caspase activation, poly(ADP-ribose)-polymerase (PARP) processing and cytochrome c release from mitochondria. Adenoviral X-linked inhibitor of apoptosis (XIAP) gene transfer, or exposure to the caspase inhibitor, benzyloxycarbonyl-Val-Ala-DL-Asp-fluoro-methylketone zVAD-fmk, blocks caspase-7 and PARP processing, but not cell death, whereas BCL-X(L) blocks not only caspase-7 and PARP processing but also cell death. APC induce changes in Delta Psi m in sensitive glioma cells, but not in resistant astrocytes. The changes in Delta Psi m are unaffected by crm-A (cowpox serpin-cytokine response modifier protein A), XIAP or zVAD-fmk, but blocked by BCL-X(L), and are thus a strong predictor of cell death in response to APC. Free radicals are induced, but not responsible for cell death. APC thus induce a characteristic morphological, BCL-X(L)-sensitive, apparently caspase-independent cell death involving mitochondrial alterations selectively in neoplastic astrocytic cells.  相似文献   

18.
19.
Akt is a serine/threonine protein kinase that plays a vital role in promoting cellular survival. Predominantly cytosolic, upon stimulation with growth-factors or stress, active Akt translocates into mitochondria, but the functions of Akt in mitochondria are not yet fully understood. Mitochondria play a central role in apoptotic pathways and given Akt's functions in the cytoplasm, Akt in mitochondria may help preserve mitochondrial integrity during cellular stress. To test if the translocation of Akt into mitochondria is neuroprotective, adenoviral vectors expressing a constitutively active Akt, Ad-HA-Akt (DD), and a constitutively active Akt with a mitochondrial targeting signal, Ad-Mito-HA-Akt (DD), were generated. Human SH-SY5Y neuroblastoma cells expressing the adenoviral constructs were treated with staurosporine to initiate intrinsic apoptotic cell death and several aspects of the mitochondrial apoptotic pathway were evaluated. Expression of active Akt targeted to mitochondria was found to be sufficient to significantly reduce staurosporine-induced activation of caspase-3 and caspase-9, the release of cytochrome c from mitochondria, and Bax oligomerization at mitochondria. These findings demonstrate that intramitochondrial active Akt results in efficient protection against apoptotic signaling.  相似文献   

20.
The ability to selectively induce apoptosis in tumor cells is the prime goal in cancer immunotherapy and aims at identifying potential molecular targets, regulating this process. Here we show that the sera from the animals which had spontaneously rejected the AK-5 tumor (a rat histiocytoma) had an effective and potent ability to counteract and kill tumor cells by inducing apoptosis, with a high degree of specificity. Apoptosis induced by the serum factor involved the activation of caspases and cytochrome c release to the cytosol. A reduction in mitochondrial transmembrane potential (Delta psi(m)) occurred considerably later than cytochrome c translocation. The anti-apoptotic protein Bcl-2 and the pancaspase inhibitor zVAD-fmk did not prevent cytochrome c release, but completely blocked the reduction in Delta psi(m), DNA fragmentation and apoptosis. Cyclosporin A (CsA), an inhibitor of the mitochondrial permeability transition (MPT) pore had no effect on cytochrome c release and apoptosis mediated by serum factor in AK-5 cells, suggesting that apoptosis was independent of MPT. Taken together these results suggest that the serum factor in conjunction with the immune cells may be participating in the efficient rejection of the tumor in syngeneic hosts and Delta psi(m) disruption but not cytochrome c release, is a critical and decisive event to trigger apoptotic cell death induced by the serum factor in AK-5 tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号