首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alkylphosphocholine-induced glioma cell death is BCL-X(L)-sensitive, caspase-independent and characterized by massive cytoplasmic vacuole formation
Authors:Naumann U  Wischhusen J  Weit S  Rieger J  Wolburg H  Massing U  Weller M
Institution:Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. ulrike.naumann@uni-tuebingen.de
Abstract:Alkylphosphocholines (APC) are candidate anticancer agents. We here report that APC induce the formation of large vacuoles and typical features of apoptosis in human glioma cell lines, but not in immortalized astrocytes. APC promote caspase activation, poly(ADP-ribose)-polymerase (PARP) processing and cytochrome c release from mitochondria. Adenoviral X-linked inhibitor of apoptosis (XIAP) gene transfer, or exposure to the caspase inhibitor, benzyloxycarbonyl-Val-Ala-DL-Asp-fluoro-methylketone zVAD-fmk, blocks caspase-7 and PARP processing, but not cell death, whereas BCL-X(L) blocks not only caspase-7 and PARP processing but also cell death. APC induce changes in Delta Psi m in sensitive glioma cells, but not in resistant astrocytes. The changes in Delta Psi m are unaffected by crm-A (cowpox serpin-cytokine response modifier protein A), XIAP or zVAD-fmk, but blocked by BCL-X(L), and are thus a strong predictor of cell death in response to APC. Free radicals are induced, but not responsible for cell death. APC thus induce a characteristic morphological, BCL-X(L)-sensitive, apparently caspase-independent cell death involving mitochondrial alterations selectively in neoplastic astrocytic cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号