首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme gamma-secretase catalyzes the intramembrane proteolytic cleavage that generates the amyloid beta-peptide from the beta-amyloid precursor protein. The presenilin (PS) protein is one of the four integral membrane protein components of the mature gamma-secretase complex. The PS protein is itself subjected to endoproteolytic processing, generating stable N- and C-terminal fragment (NTF and CTF, respectively) heterodimers. Here we demonstrate that coexpression of PS1 NTF and CTF functionally mimics expression of the full-length PS1 protein and restores gamma-secretase activity in PS-deficient mammalian cells. The coexpressed fragments re-associate with each other inside the cell, where they also interact with nicastrin, another gamma-secretase complex component. Analysis of gamma-secretase activity following the expression of mutant forms of NTF and CTF, under conditions bypassing endoproteolysis, indicated that the putatively catalytic Asp257 and Asp385 residues have a direct effect on gamma-secretase activity. Moreover, we demonstrate that expression of the wild-type CTF rescues endoproteolytic cleavage of C-terminally truncated PS1 molecules that are otherwise uncleaved and inactive. Recovery of cleavage is critically dependent on the integrity of Asp385. Taken together, our findings indicate that ectopically expressed NTF and CTF restore functional gamma-secretase complexes and that the presence of full-length PS1 is not a requirement for proper complex assembly.  相似文献   

2.
Following ectodomain shedding, Notch-1 undergoes presenilin (PS)-dependent constitutive intramembranous endoproteolysis at site-3. This cleavage is similar to the PS-dependent gamma-secretase cleavage of the beta-amyloid precursor protein (betaAPP). However, topological differences in cleavage resulting in amyloid beta-peptide (Abeta) or the Notch-1 intracellular domain (NICD) indicated independent mechanisms of proteolytic cleavage. We now demonstrate the secretion of an N-terminal Notch-1 Abeta-like fragment (Nbeta). Analysis of Nbeta by MALDI-TOF MS revealed that Nbeta is cleaved at a novel site (site-4, S4) near the middle of the transmembrane domain. Like the corresponding cleavage of betaAPP at position 40 and 42 of the Abeta domain, S4 cleavage is PS dependent. The precision of this cleavage is affected by familial Alzheimer's disease-associated PS1 mutations similar to the pathological endoproteolysis of betaAPP. Considering these similarities between intramembranous processing of Notch and betaAPP, we conclude that these proteins are cleaved by a common mechanism utilizing the same protease, i.e. PS/gamma-secretase.  相似文献   

3.
Gamma-secretase is a protease complex composed of presenilin (PS), nicastrin (NCT), APH-1, and PEN-2, which catalyzes intramembrane cleavage of several type I transmembrane proteins including the Alzheimer's disease-associated beta-amyloid precursor protein. We generated stable RNA interference-mediated PEN-2 knockdown cells to probe mutant PEN-2 variants for functional activity. Knockdown of PEN-2 was associated with impaired NCT maturation and deficient PS1 endoproteolysis, which was efficiently rescued by wild type or N-terminally tagged PEN-2 but not by C-terminally tagged PEN-2 or by the C-terminally truncated PEN-2-DeltaC mutant. Although the latter mutants rescued the PS1 holoprotein accumulation associated with the PEN-2 knockdown, they failed to restore normal levels of the PS1 N- and C-terminal fragments and to maturate NCT. PEN-2-DeltaC was highly unstable and rapidly turned over by proteasomal degradation consistent with its failure to become stably incorporated into the gamma-secretase complex. In addition, expression of PEN-2-DeltaC caused a selective instability of the PS1 N-/C-terminal fragment heterodimer that underwent proteasomal degradation, whereas NCT and APH-1 were stable. Interestingly, when we knocked down PEN-2 in the background of the endoproteolysis-deficient PS1 Deltaexon9 mutant, immature NCT still accumulated, demonstrating that PEN-2 is also required for gamma-secretase complex maturation when PS endoproteolysis cannot occur. Taken together, our data suggest that PEN-2 is required for the stabilization of the PS fragment heterodimer within the gamma-secretase complex following PS endoproteolysis. This function critically depends on the PEN-2 C terminus. Moreover, our data show that PEN-2 is generally required for gamma-secretase complex maturation independent of its activity in PS1 endoproteolysis.  相似文献   

4.
Processing of the Alzheimer amyloid precursor protein (APP) into the amyloid beta-protein and the APP intracellular domain is a proteolysis event mediated by the gamma-secretase complex where presenilin (PS) proteins are key constituents. PS is subjected to an endoproteolytic cleavage, generating a stable heterodimer composed of an N-terminal and a C-terminal fragment. Here we aimed at further understanding the role of PS in endoproteolysis, in proteolytic processing of APP and Notch, and in assembly of the gamma-secretase complex. By using a truncation protocol and alanine scanning, we identified Tyr-288 in the PS1 N-terminal fragment as critical for PS-dependent intramembrane proteolysis. Further mutagenesis of the 288 site identified mutants differentially affecting endoproteolysis and gamma-secretase activity. The Y288F mutant was endoproteolyzed to the same extent as wild type PS but increased the amyloid beta-protein 42/40 ratio by approximately 75%. In contrast, the Y288N mutant was also endoproteolytically processed but was inactive in reconstituting gamma-secretase in PS null cells. The Y288D mutant was deficient in both endoproteolysis and gamma-secretase activity. All three mutant PS1 molecules were incorporated into gamma-secretase complexes and stabilized Pen-2 in PS null cells. Thus, mutations at Tyr-288 do not affect gamma-secretase complex assembly but can differentially control endoproteolysis and gamma-secretase activity.  相似文献   

5.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

6.
The discovery that a deficiency of presenilin 1 (PS1) decreases the production of amyloid beta-protein (Abeta) identified the presenilins as important mediators of the gamma-secretase cleavage of beta-amyloid precursor protein (APP). Recently, we found that two conserved transmembrane (TM) aspartates in PS1 are critical for Abeta production, providing evidence that PS1 either functions as a required diaspartyl cofactor for gamma-secretase or is itself gamma-secretase. Presenilin 2 (PS2) shares substantial sequence and possibly functional homology with PS1. Here, we show that the two TM aspartates in PS2 are also critical for gamma-secretase activity, providing further evidence that PS2 is functionally homologous to PS1. Cells stably co-expressing TM Asp --> Ala mutations in both PS1 and PS2 show further accumulation of the APP-derived gamma-secretase substrates, C83 and C99. The production of Abeta is reduced to undetectable levels in the conditioned media of these cells. Furthermore, endoproteolysis of the exogenous Asp mutant PS2 is absent, and endogenous PS1 C-terminal fragments are diminished to undetectable levels. Therefore, the co-expression of PS1 and PS2 TM Asp --> Ala mutants suppresses the formation of any detectable PS1 or PS2 heterodimeric fragments and essentially abolishes the production of Abeta. These results explain the residual Abeta production seen in PS1-deficient cells and demonstrate the absolute requirement of functional presenilins for Abeta generation. We conclude that presenilins, and their TM aspartates in particular, are attractive targets for lowering Abeta therapeutically to prevent Alzheimer's disease.  相似文献   

7.
gamma-Secretase is a membrane protein complex with an unusual aspartyl protease activity that catalyses the regulated intramembranous cleavage of the beta-amyloid precursor protein (APP) to release the Alzheimer's disease (AD)-associated amyloid beta-peptide (Abeta) and the APP intracellular domain (AICD). Here we show the reconstitution of gamma-secretase activity in the yeast Saccharomyces cerevisiae, which lacks endogenous gamma-secretase activity. Reconstituted gamma-secretase activity depends on the presence of four complex components including presenilin (PS), nicastrin (Nct), APH-1 (refs 3-6) and PEN-2 (refs 4, 7), is associated with endoproteolysis of PS, and produces Abeta and AICD in vitro. Thus, the biological activity of gamma-secretase is reconstituted by the co-expression of human PS, Nct, APH-1 and PEN-2 in yeast.  相似文献   

8.
Gamma-secretase is an aspartyl protease complex that catalyzes the intramembrane cleavage of a subset of type I transmembrane proteins including the beta-amyloid precursor protein (APP) implicated in Alzheimer's disease. Presenilin (PS), nicastrin (NCT), anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2) constitute the active gamma-secretase complex. PEN-2, the smallest subunit, is required for triggering PS endoproteolysis. Stabilization of the resultant N- and C-terminal fragments, which carry the catalytically active site aspartates, but not endoproteolysis itself, requires the C-terminal domain of PEN-2. To functionally dissect the C-terminal domain we created C-terminal deletion mutants and mutagenized several evolutionary highly conserved residues. The PEN-2 mutants were then probed for functional complementation of a PEN-2 knockdown, which displays deficient PS1 endoproteolysis and impaired NCT maturation. Progressive truncation of the C-terminus caused increasing loss of function. This was also observed for an internal deletion mutant as well as for C-terminally tagged PEN-2 with a twofold elongated C-terminal domain. Interestingly, only simultaneous, but not individual substitution of the highly conserved D90, F94, P97 and G99 residues with alanine interfered with PEN-2 function. All loss of function mutants identified allowed PS1 endoproteolysis, but failed to stably associate with the resultant PS1 fragments, which like the PEN-2 loss of function mutants underwent proteasomal degradation. However, complex formation of the PEN-2 mutants with PS1 fragments could be recovered when proteasomal degradation was blocked. Taken together, our data suggest that the PS-subunit stabilizing function of PEN-2 depends on length and overall sequence of its C-terminal domain.  相似文献   

9.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

10.
Mutations in human presenilin (PS) genes cause aggressive forms of familial Alzheimer's disease. Presenilins are polytopic proteins that harbour the catalytic site of the gamma-secretase complex and cleave many type I transmembrane proteins including beta-amyloid precursor protein (APP), Notch and syndecan 3. Contradictory results have been published concerning whether PS mutations cause 'abnormal' gain or (partial) loss of function of gamma-secretase. To avoid the possibility that wild-type PS confounds the interpretation of the results, we used presenilin-deficient cells to analyse the effects of different clinical mutations on APP, Notch, syndecan 3 and N-cadherin substrate processing, and on gamma-secretase complex formation. A loss in APP and Notch substrate processing at epsilon and S3 cleavage sites was observed with all presenilin mutants, whereas APP processing at the gamma site was affected in variable ways. PS1-Delta9 and PS1-L166P mutations caused a reduction in beta-amyloid peptide Abeta40 production whereas PS1-G384A mutant significantly increased Abeta42. Interestingly PS2, a close homologue of PS1, appeared to be a less efficient producer of Abeta than PS1. Finally, subtle differences in gamma-secretase complex assembly were observed. Overall, our results indicate that the different mutations in PS affect gamma-secretase structure or function in multiple ways.  相似文献   

11.
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.  相似文献   

12.
13.
The Alzheimer's disease-associated beta-amyloid peptide is produced through cleavage of amyloid precursor protein by beta-secretase and gamma-secretase. gamma-Secretase is a complex containing presenilin (PS) as the catalytic component and three essential cofactors: Nicastrin, anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2). PS and signal peptide peptidase (SPP) define a novel family of aspartyl proteases that cleave substrates within the transmembrane domain presumptively using two membrane-embedded aspartic acid residues for catalysis. Apart from the two aspartate-containing active site motifs, the only other region that is conserved between PS and SPP is a PAL sequence at the C-terminus. Although it has been well documented that this motif is essential for gamma-secretase activity, the mechanism underlying such a critical role is not understood. Here we show that mutations in this motif affect the conformation of the active site of gamma-secretase resulting in a complete loss of PS binding to a gamma-secretase transition state analog inhibitor, Merck C. Analogous mutations in SPP significantly inhibit its enzymatic activity. Furthermore, these mutations also abolish SPP binding to Merck C, indicating that SPP and gamma-secretase share a similar active site conformation, which is dependent on the PAL motif. Exploring the amino acid requirements within this motif reveals a very small side chain requirement, which is conserved during evolution. Together, these observations strongly support the hypothesis that the PAL motif contributes to the active site conformation of gamma-secretase and of SPP.  相似文献   

14.
The presenilin (PS) proteins are components of the gamma-secretase activity, which is central in the pathogenesis of Alzheimer's disease. Here we present a novel cell-based reporter gene assay for the quantification of PS-controlled gamma-secretase cleavage of the Alzheimer amyloid precursor protein (APP). We show that this assay offers several advantages, including increased sensitivity and specificity, improved quantification of cleavage, and simultaneous detection of all gamma-secretase cleavages in APP. Furthermore, the APP assay can be used in parallel with a similar assay that records gamma-secretase cleavage of a Notch receptor. The use of these assays to analyze the effects of two known gamma-secretase inhibitors and postulated PS active site mutants on APP and Notch processing demonstrated that inhibitors and mutants that differently affect Notch and APP cleavage can be identified rapidly. The possibility in using these assays for high throughput screening of candidate gamma-secretase inhibitors for APP and Notch in parallel opens up new vistas to systematically search for novel inhibitors that selectively block APP cleavage while not affecting Notch signaling.  相似文献   

15.
Presenilin 1 (PS1) and presenilin 2 (PS2) are polytopic membrane proteins that are mutated in the majority of early onset familial Alzheimer's disease (FAD) cases. Two lines of evidence establish a critical role for PS in the production of beta-amyloid peptides (Abeta). FAD-linked PS mutations elevate the levels of highly amyloidogenic Abeta ending at residue 42 (Abeta42), and cells with ablated PS1 alleles secrete low levels of Abeta. Several recent reports have shown that the hydrophilic loop (HL) domain, located between transmembrane domains 6 and 7, contains sites for phosphorylation, caspase cleavage, and sequences that bind several PS-interacting proteins. In the present report, we examined the metabolism of PS polypeptides lacking the HL domain and the influence of these molecules on Abeta production. We report that the deletion of the HL domain does not have a deleterious effect on the regulated endoproteolysis of PS, saturable accumulation of PS fragments, or the self-association of PS fragments. Abeta production was not significantly altered in cells expressing HL-deleted PS polypeptides compared with cells expressing full-length PS. Importantly, deletion of the HL domain did not affect FAD mutation-mediated elevation in the production of Abeta42. Furthermore, the deletion of the HL domain did not impair the role of PS1 or PS2 in facilitating Notch processing. Thus, our results argue against a biologically or pathologically relevant role for the HL domain phosphorylation and caspase cleavage and the association of PS HL domain-interacting proteins, in amyloid precursor protein metabolism and Abeta production or Notch cleavage.  相似文献   

16.
gamma-Secretase, which is responsible for the intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch, is a multiprotein complex consisting of at least four components: presenilin (PS); nicastrin (Nct); APH-1 (anterior pharynx-defective-1); and presenilin enhancer-2 (PEN-2). Presenilin 1 (PS1) is known to be essential for the stability, interaction, and trafficking of the other PS1/gamma-secretase components. However, the precise functions of the other components remain elusive. Here, we investigated the functions of Nct within the PS1/gamma-secretase complex. We demonstrated that the loss of Nct expression in the embryonic fibroblast cells (Nct KO cells) results in dramatically decreased levels of APH-1, PEN-2, and PS1 fragments accompanied by a significant accumulation of full-length PS1. In the absence of Nct, PEN-2 and full-length PS1 are subjected to proteasome-mediated degradation, whereas the degradation of APH-1 is mediated by both proteasomal and lysosomal pathways. Unlike the case of wild type cells in which the gamma-secretase complex mainly locates in the trans-Golgi network, the majority of residual PEN-2, APH-1, and the uncleaved full-length PS1 in Nct KO cells reside in the endoplasmic reticulum, which remain associated with each other in the absence of Nct. Interestingly, significant amounts of full-length PS1 and PEN-2, but not APH-1, are detected on the plasma membrane in Nct KO cells, suggesting the Nct-independent cell surface delivery of the PEN-2.PS1. Finally, the diminished PEN-2 protein level in Nct-deficient cells can be partially restored by overexpression of exogenous PS1, APH-1, or PEN-2 individually or collectively, indicating a dispensable role for Nct in controlling PEN-2 level. Taken together, our study demonstrates a critical role of Nct in the stability and proper intracellular trafficking of other components of the PS1/ gamma-secretase complex but not in maintaining the association of PEN-2, APH-1, and full-length PS1.  相似文献   

17.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

18.
Alzheimer's disease (AD)-associated gamma-secretase is a presenilin (PS)- dependent proteolytic activity involved in the intramembraneous cleavage of the beta-amyloid precursor protein, Notch, LDL receptor-related protein, E-cadherin, and ErbB-4. This cut produces the corresponding intracellular domains (ICD), which are required for nuclear signaling of Notch and probably ErbB-4, the beta-amyloid precursor protein, E-cadherin, and the LDL receptor-related protein as well. We have now investigated CD44, a cell surface adhesion molecule, which also undergoes an intramembraneous cleavage to liberate its ICD. We demonstrate that this cleavage requires a PS-dependent gamma-secretase activity. A loss-of-function PS1 mutation, a PS1/PS2 knockout, as well as two independent and highly specific gamma-secretase inhibitors, abolish this cleavage. Surprisingly, small peptides similar to the amyloid beta-peptide (Abeta) are generated by an additional cut in the middle of the transmembrane region of CD44. Like Abeta, these CD44 beta-peptides are generated in a PS-dependent manner. These findings therefore suggest a dual intramembraneous cleavage mechanism mediated by PS proteins. The dual cleavage mechanism is required for nuclear signaling as well as removal of remaining transmembrane domains, a general function of PS in membrane protein metabolism.  相似文献   

19.
Alzheimer's disease (AD) is characterized by the invariant accumulation of senile plaques predominantly composed of the pathologically relevant 42-amino acid amyloid beta-peptide (Abeta42). The presenilin (PS) proteins play a key role in Abeta generation. FAD-associated mutations in PS1 and PS2 enhance the production of Abeta42, and PS1 is required for physiological Abeta production, since a gene knockout of PS1 and dominant negative mutations of PS1 abolish Abeta generation. PS proteins undergo endoproteolytic processing, and current evidence indicates that fragment formation may be required for the amyloidogenic function of PS. We have now determined the sequence requirements for endoproteolysis of PS1. Mutagenizing amino acids at the previously determined major cleavage site (amino acid 298) had no effect on PS1 endoproteolysis. In contrast, mutations or deletions at the additional cleavage site around amino acid 292 blocked endoproteolysis. The uncleavable PS1 derivatives accumulated as full-length proteins and replaced the endogenous PS1 proteins. In contrast to the previously described aspartate mutations within transmembrane domains 6 and 7, the uncleaved PS1 variants do not act as dominant negative inhibitors of Abeta production. Moreover, when a FAD-associated mutation (M146L) was combined with a mutation blocking endoproteolysis, Abeta42 production still reached pathological levels. These data therefore demonstrate that endoproteolysis of presenilins is not an absolute prerequisite for the amyloidogenic function of PS1. These data also show that accumulation of the PS1 holoprotein is not associated with the pathological activity of PS1 mutations as suggested previously.  相似文献   

20.
Presenilin (PS1 and PS2) holoproteins are transiently incorporated into low molecular weight (MW) complexes. During subsequent incorporation into a higher MW complex, they undergo endoproteolysis to generate stable N- and C-terminal fragments. Mutation of either of two conserved aspartate residues in transmembrane domains inhibits both presenilin-endoproteolysis and the proteolytic processing of beta-amyloid precursor protein and Notch. We show that although PS1/PS2 endoproteolysis is not required for inclusion into the higher MW N- and C-terminal fragment-containing complex, aspartate mutant holoprotein presenilins are not incorporated into the high MW complexes. Aspartate mutant presenilin holoproteins also preclude entry of endogenous wild type PS1/PS2 into the high MW complexes but do not affect the incorporation of wild type holoproteins into lower MW holoprotein complexes. These data suggest that the loss of function effects of the aspartate mutants result in altered PS complex maturation and argue that the functional presenilin moieties are contained in the high molecular weight complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号