首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 non-transposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.  相似文献   

2.
Krom N  Ramakrishna W 《Plant physiology》2008,147(4):1763-1773
Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.  相似文献   

3.
MOTIVATION: The annotation of the Arabidopsis thaliana genome remains a problem in terms of time and quality. To improve the annotation process, we want to choose the most appropriate tools to use inside a computer-assisted annotation platform. We therefore need evaluation of prediction programs with Arabidopsis sequences containing multiple genes. RESULTS: We have developed AraSet, a data set of contigs of validated genes, enabling the evaluation of multi-gene models for the Arabidopsis genome. Besides conventional metrics to evaluate gene prediction at the site and the exon levels, new measures were introduced for the prediction at the protein sequence level as well as for the evaluation of gene models. This evaluation method is of general interest and could apply to any new gene prediction software and to any eukaryotic genome. The GeneMark.hmm program appears to be the most accurate software at all three levels for the Arabidopsis genomic sequences. Gene modeling could be further improved by combination of prediction software. AVAILABILITY: The AraSet sequence set, the Perl programs and complementary results and notes are available at http://sphinx.rug.ac.be:8080/biocomp/napav/. CONTACT: Pierre.Rouze@gengenp.rug.ac.be.  相似文献   

4.
Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO‐At (gene ontology prediction in A. thaliana), a method that combines five data types (co‐expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two‐step approach, GO‐At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the ‘best hit’ from the first list, and achieves success rates of up to 79%. GO‐At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO‐At’s ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi‐associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web‐based implementation of GO‐At ( http://www.bioinformatics.leeds.ac.uk/goat ) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.  相似文献   

5.

Background  

Gene Ontology (GO) annotation, which describes the function of genes and gene products across species, has recently been used to predict protein subcellular and subnuclear localization. Existing GO-based prediction methods for protein subcellular localization use the known accession numbers of query proteins to obtain their annotated GO terms. An accurate prediction method for predicting subcellular localization of novel proteins without known accession numbers, using only the input sequence, is worth developing.  相似文献   

6.
Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO.  相似文献   

7.
8.
MOTIVATION: Despite advances in the gene annotation process, the functions of a large portion of gene products remain insufficiently characterized. In addition, the in silico prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or functional genomic approaches. To our knowledge, no prediction method has been demonstrated to be highly accurate for sparsely annotated GO terms (those associated to fewer than 10 genes). RESULTS: We propose a novel approach, information theory-based semantic similarity (ITSS), to automatically predict molecular functions of genes based on existing GO annotations. Using a 10-fold cross-validation, we demonstrate that the ITSS algorithm obtains prediction accuracies (precision 97%, recall 77%) comparable to other machine learning algorithms when compared in similar conditions over densely annotated portions of the GO datasets. This method is able to generate highly accurate predictions in sparsely annotated portions of GO, where previous algorithms have failed. As a result, our technique generates an order of magnitude more functional predictions than previous methods. A 10-fold cross validation demonstrated a precision of 90% at a recall of 36% for the algorithm over sparsely annotated networks of the recent GO annotations (about 1400 GO terms and 11,000 genes in Homo sapiens). To our knowledge, this article presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions than more widely used cross-validation approaches. By manually assessing a random sample of 100 predictions conducted in a historical rollback evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43-58%) can be achieved for the human GO Annotation file dated 2003. AVAILABILITY: The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset and other supplementary information is available at http://phenos.bsd.uchicago.edu/ITSS/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

9.
10.
The Gene Ontology (GO) project provides a controlled vocabulary to facilitate high-quality functional gene annotation for all species. Genes in biological databases are linked to GO terms, allowing biologists to ask questions about gene function in a manner independent of species. This tutorial provides an introduction for biologists to the GO resources and covers three of the most common methods of querying GO: by individual gene, by gene function and by using a list of genes. [For the sake of brevity, the term 'gene' is used throughout this paper to refer to genes and their products (proteins and RNAs). GO annotations are always based on the characteristics of gene products, even though it may be the gene that is cited in the annotation.].  相似文献   

11.
12.
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content.  相似文献   

13.
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.  相似文献   

14.
Gene function annotation remains a key challenge in modern biology. This is especially true for high-throughput techniques such as gene expression experiments. Vital information about genes is available electronically from biomedical literature in the form of full texts and abstracts. In addition, various publicly available databases (such as GenBank, Gene Ontology and Entrez) provide access to gene-related information at different levels of biological organization, granularity and data format. This information is being used to assess and interpret the results from high-throughput experiments. To improve keyword extraction for annotational clustering and other types of analyses, we have developed a novel text mining approach, which is based on keywords identified at the level of gene annotation sentences (in particular sentences characterizing biological function) instead of entire abstracts. Further, to improve the expressiveness and usefulness of gene annotation terms, we investigated the combination of sentence-level keywords with terms from the Medical Subject Headings (MeSH) and Gene Ontology (GO) resources. We find that sentence-level keywords combined with MeSH terms outperforms the typical 'baseline' set-up (term frequencies at the level of abstracts) by a significant margin, whereas the addition of GO terms improves matters only marginally. We validated our approach on the basis of a manually annotated corpus of 200 abstracts generated on the basis of 2 cancer categories and 10 genes per category. We applied the method in the context of three sets of differentially expressed genes obtained from pediatric brain tumor samples. This analysis suggests novel interpretations of discovered gene expression patterns.  相似文献   

15.
With the increasing quantities of Brassica genomic data being entered into the public domain and in preparation for the complete Brassica genome sequencing effort, there is a growing requirement for the structuring and detailed bioinformatic analysis of Brassica genomic information within a user-friendly database. At the Plant Biotechnology Centre, Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data, to aid its application to agricultural biotechnology research. These tools include a sequence database, ASTRA, a sequence processing pipeline incorporating annotation against GenBank, SwissProt and Arabidopsis Gene Ontology (GO) data and tools for molecular marker discovery and comparative genome analysis. All sequences are mined for simple sequence repeat (SSR) molecular markers using 'SSR primer' and mapped onto the complete Arabidopsis thaliana genome by sequence comparison. The database may be queried using a text-based search of sequence annotation or GO terms, BLAST comparison against resident sequences, or by the position of candidate orthologues within the Arabidopsis genome. Tools have also been developed and applied to the discovery of single nucleotide polymorphism (SNP) molecular markers and the in silico mapping of Brassica BAC end sequences onto the Arabidopsis genome. Planned extensions to this resource include the integration of gene expression data and the development of an EnsEMBL-based genome viewer.  相似文献   

16.
17.
18.
Automated Gene Ontology annotation for anonymous sequence data   总被引:10,自引:1,他引:9       下载免费PDF全文
  相似文献   

19.
Learnability-based further prediction of gene functions in Gene Ontology   总被引:9,自引:0,他引:9  
Tu K  Yu H  Guo Z  Li X 《Genomics》2004,84(6):922-928
Currently the functional annotations of many genes are not specific enough, limiting their further application in biology and medicine. It is necessary to push the gene functional annotations deeper in Gene Ontology (GO), or to predict further annotated genes with more specific GO terms. A framework of learnability-based further prediction of gene functions in GO is proposed in this paper. Local classifiers are constructed in local classification spaces rooted at qualified parent nodes in GO, and their classification performances are evaluated with the averaged Tanimoto index (ATI). Classification spaces with higher ATIs are selected out, and genes annotated only to the parent classes are predicted to child classes. Through learnability-based further predicting, the functional annotations of annotated genes are made more specific. Experiments on the fibroblast serum response dataset reported further functional predictions for several human genes and also gave interesting clues to the varied learnability between classes of different GO ontologies, different levels, and different numbers of child classes.  相似文献   

20.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号