首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four fractions of a water-insoluble alpha-(1-->3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80 degrees C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [eta] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4 x 10(4)) of sulfated glucan S-GL-1 was much lower than that (44.5 x 10(4)) of original alpha-(1-->3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C(infinity) for the S-GL in 0.2 M NaCl aqueous solution at 25 degrees C were found to be: [eta] = 1.32 x 10(-3) Mw(1.06) (cm3 g(-1)) and 16, respectively, in the Mw range from 1.1 x 10(4) to 2.4 x 10(4). It indicated that the sulfated derivatives of the alpha-(1-->3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the alpha-(1-->3)-D-glucan and curdlan, a beta-(1-->3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

2.
Huang Q  Zhang L 《Biopolymers》2005,79(1):28-38
From Poria cocos mycelia yielded via a pilot scale facility-fermentation tank, a water-insoluble (1-->3)-alpha-D-glucan coded as Pi-PCM3-I was isolated by extraction with 0.5 M NaOH/0.01 M NaBH(4) aqueous solution. Nine fractions from F1 to F9 with a weight-average molecular mass (M(w)) range from 7.75 x 10(4) to 57.3 x 10(4) were prepared from the Pi-PCM3-I sample by a nonsolvent addition method. The fractions were reacted with chlorosulfonic acid-pyridine complex to product water-soluble sulfated derivatives coded as S1 to S8 with M(w) from 2.36 x 10(4) to 14.5 x 10(4) and degree of substitution (DS) of 0.86-1.38. M(w), z-average radius of gyration (s(2) (z) (1/2)), the second virial coefficient (A(2)), and the intrinsic viscosity ([eta]) of the native and sulfated Pi-PCM3-I were measured by laser light scattering (LLS), size-exclusion chromatography combined with LLS (SEC-LLS), and viscometry at 25 degrees C. The Mark-Houwink equations for Pi-PCM3-I in 0.25 M LiCl/dimethylsulfoxide (DMSO) (Me(2)SO) and for its sulfated derivative in 0.15 M NaCl aqueous solution at 25 degrees C were established to be [eta] = 1.33 x 10(-2) M(w) (0.75+/-0.01) (mL g(-1)) and [eta] = 1.46 x 10(-4) M(w) (1.13+/-0.01) (mL g(-1)), respectively. On the basis of theories for a wormlike cylinder model, the conformational parameters of the native and sulfated Pi-PCM3-I were calculated to be 760 +/- 50 and 1060 +/- 30 nm(-1) for the molar mass per unit contour length (M(L)), 6.3 +/- 0.5 and 13.1 +/- 1 nm for the persistence length (q), and 14.9 +/- 0.2 and 31.8 +/- 1 for the characteristic ratio (C( proportional, variant)), respectively. The results revealed that Pi-PCM3-I existed as an extended flexible chain in 0.25 M LiCl/Me(2)SO, and its sulfated derivative existed as a semistiff chain in 0.15 M NaCl aqueous solution. Furthermore, Pi-PCM3-I possessed similar structure and molecular parameters to wc-PCM3-I from a rotary shaker; this suggests promising industrialization of Poria cocos polysaccharides.  相似文献   

3.
Six water-insoluble (1-->3)-beta-D-glucan fractions TM8-1 to TM8-6 with weight-average molecular mass Mw ranging from 5.76 to 77.4x10(4) obtained from the sclerotia of Pleurotus tuber-regium were sulfated to produce the water-soluble fractions S-TM8-1 to S-TM8-6 with Mw from 6.0 to 64.8x10(4). The degree of substitution (DS) of S-TM8 fractions was analyzed by elemental analysis (EA) to be 1.14-1.74. The 13C NMR results indicated that the C-6 was fully substituted, and C-2, C-4 were partially substituted by the sulfo-groups. The Mw and the intrinsic viscosity [eta] of the S-TM8 fractions were measured, respectively, by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependences of [eta] and radius of gyration z(1/2) on Mw for the S-TM8 samples were found to be [eta]=1.89x10(-2) Mw(0.70) (cm3/g) and z(1/2)=1.12x10(-4) Mw(0.81) (nm) in the Mw range tested. Based on current theories for a wormlike chain model, the molar mass per unit contour length ML and persistence length q of the S-TM8 were calculated to be 990 nm(-1) and 8.5 nm, respectively. The relatively higher q value suggested a more expanded flexible chain of S-TM8 in PBS. The water-solubility and relatively expanded chain conformation of the STM8 fractions were considered to be significant to their antiviral activity.  相似文献   

4.
The weight-average molecular weight (Mw) and intrinsic viscosity ([eta]) of the alpha-(1-->3)-D-glucan (L-FV-II) from Lentinus edodes in 0.5 and 1.0 M NaOH aqueous solution containing urea, were studied by light scattering and viscometry. The Mw value of the glucan decreased with increase of the urea and NaOH concentration. A strong intermolecular hydrogen bonding confers water-insolubility on the glucan, but NaOH and especially urea, broke this hydrogen bonding leading to enhanced water-solubility. Use of 1.0 M urea-1.0 M NaOH as solvent broke not only intermolecular hydrogen bonds but also partial covalent bonds of the alpha-glucan in aqueous solution, resulting in a decrease of Mw and [eta]. The urea and NaOH concentrations, storage time with stirring, and mode of preparation of the polysaccharide in aqueous solution significantly affected the determination of Mw and [eta]. The dependences of specific rotation and fluorescence emission ratio of a probe on urea concentration showed that a change in the molecular conformation of the alpha-glucan in 0.5 M NaOH aqueous solution containing urea occurred in the range 0.4-0.6 M urea. The 0.5 M urea-0.5 M NaOH aqueous solution is a suitable solvent for the glucan, and the Mw and [eta] values obtained were 5.21 x 10(5) and 148 cm3 g(-1), respectively. Degradation of the glucan was obvious after storage for 15 months.  相似文献   

5.
Zhang X  Xu J  Zhang L 《Biopolymers》2005,78(4):187-196
Seven lentinan fractions of various weight-average molecular weights (M(w)), ranging from 1.45 x 10(5) to 1.13 x 10(6) g mol(-1) were investigated by static light scattering and viscometry in 0.1M NaOH solution at 25 degrees C. The intrinsic viscosity [eta] - M(w) and radius of gyration s(2)(z) (1/2) - M(w) relationships for lentinan in 0.1M NaOH solution were found to be represented by [eta] = 5.1 x 10(-3)M(w) (0.81) cm(3) g(-1) and s(2)(z) (1/2) = 2.3 x 10(-1)M(w) (0.58) nm, respectively. Focusing on the effects of the M(w) polydispersity with the Schulz-Zimm distribution function, the data of M(w), s(2)(z) (1/2), and [eta] was analyzed on the basis of the Yoshizaki-Nitta-Yamakawa theory for the unperturbed helical wormlike chain combined with the quasi-two-parameter (QTP) theory for excluded-volume effects. The persistence length, molecular weight per unit contour length, and the excluded-volume strength were determined roughly to be 6.2 nm, 980 nm(-1), and 0.1, respectively. Compared with the theoretical value calculated by the Monte Carlo model, the persistence length is longer than that of the single (1 --> 3)-beta-(D)-glucan chain. The results revealed that lentinan exists as single-stranded flexible chains in 0.1M NaOH solution with a certain degree of expansion due to the electrostatic repulsion from the interaction between the OH(-) anions and lentinan molecules.  相似文献   

6.
Zhang L  Zhang M  Dong J  Guo J  Song Y  Cheung PC 《Biopolymers》2001,59(6):457-464
A water-insoluble polysaccharide (TM8) was isolated from sclerotium of Pleurotus tuber-regium by extraction with 0.5M NaOH aqueous solutions at 120 degrees C. Its chemical structure was confirmed by infrared, high performance liquid chromatography, gas chromatography, and (13)C NMR in dimethylsulfoxide (DMSO) to be composed of beta-(1 --> 3)-D-glucan backbone chain linked with a branched glucose, one out of every three glycosyl units being substituted at C6 position. The glucan TM8 in DMSO was fractionated by nonsolvent addition method into ten fractions, and the solution properties were studied by size exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS) and viscometry in DMSO at 30 degrees C. The dependencies of intrinsic viscosity [eta] and radius of gyration [(s(2)(1/2)(z-2)] on weight-average molecular mass M(w) for this glucan were found to be [eta] = (9.24 +/- 0.2) x 10(-2)M(w)(0.51 +/- 0.02) (cm(3)g(-1)) and [(s(2)(1/2)(z-2)] = (3.67 +/- 0.3) x 10(-2)M(w)(0.56 +/- 0.02) (nm) in the range of M(w) from 1.07 x 10(4) to 77.4 x 10(4). Based on current theories for a wormlike chain, the conformational parameters of the glucan TM8 were found to be 408 (nm(-1)) for M(L), 3.1 (nm) for q, and 16.8 for C(infinity), suggesting that the polysaccharide exists as a dense random-coil chain in DMSO, due to branched structure.  相似文献   

7.
Zhang M  Zhang L  Cheung PC 《Biopolymers》2003,68(2):150-159
Seven water-insoluble (1 --> 3)-beta-D-glucan fractions TM8-1 to TM8-7 with weight-average molecular mass M(w) ranged from 2.22 to 77.4 x 10(4) obtained from the sclerotia of Pleurotus tuber-regium were carboxymethylated to produce the water-soluble fractions CTM8-1 to CTM8-7 with M(w) ranged from 3.87 to 87.8 x 10(4). The degree of substitution (DS) of CTM8 fractions was analyzed by ir and elemental analysis (EA) to be 0.3-0.68. The M(w) and the intrinsic viscosity [eta] of the CTM8 fractions were measured by size-exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS), MALLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependencies of [eta] and radius of gyration (z) (1/2) on M(w) for the CTM8 samples were found to be [eta] = (8.82 +/- 0.03) x 10(-3) M(w)(0.78 +/- 0.04) (cm(3) g(-1)) and (z) (1/2) = (3.09 +/- 0.05) x 10(-3) M(w)(0.75 +/- 0.06) (nm) in the M(w) range from 3.87 x 10(4) to 53.2 x 10(4). Based on current theories for wormlike chain model, the conformational parameters of the CTM8 were obtained to be 790 (nm(-1)) for M(L), 9.6 (nm) for q, which were higher than those of the native TM8 fractions, suggesting a more extended flexible chain of CTM8 in PBS. On the whole, the CTM8 fractions showed higher antitumor activity than their corresponding TM8 fractions. In view of data from molecular parameters and bioactivity, the antitumor activity of the CTM8 fractions may be correlated to its water solubility and relatively extended chain.  相似文献   

8.
Tao Y  Zhang L  Cheung PC 《Carbohydrate research》2006,341(13):2261-2269
A water-soluble hyperbranched beta-glucan, coded as TM3b, extracted from sclerotia of an edible fungus (Pleurotus tuber-regium) was fractioned into eight fractions coded as F1-F8 by a nonsolvent addition method. Five fractions were treated with chlorosulfonic acid at 35 degrees C to synthesize successfully sulfated derivatives coded as S-F2, S-F3, S-F4, S-F5, and S-F8 with degree of substitution of 0.28-0.54. The 13C NMR results of these sulfated beta-glucans indicated that while the C-6 position was fully substituted, C-2, C-3, and C-4 were only partially substituted by the sulfate groups. The weight-average molecular weights (Mw) and intrinsic viscosities ([eta]) of the native and sulfated TM3b fractions were determined using multi-angle laser light scattering and viscometry in 0.15M aq NaCl at 25 degrees C, respectively. The dependences of [eta] on Mw for TM3b and sulfated TM3b were found to be [eta]=0.18Mw(0.28+/-0.03) (Mw range from 3.30 x 10(4) to 3.90 x 10(7)) and [eta]=2.24 x 10(-2)Mw(0.52+/-0.06) (Mw range from 3.24 x 10(4) to 3.15 x 10(5)) in 0.15M aq NaCl at 25 degrees C, respectively. It revealed that both the native TM3b and its sulfated derivatives exist in a spherical chain conformation in 0.15M aq NaCl. Furthermore, the native and sulfated TM3b fractions showed potent antitumor activities in vivo and in vitro. The sulfated derivatives exhibited relatively higher in vitro antitumor activity against human hepatic cancer cell line HepG2 than the native TM3b. Water solubility and introduction of sulfate groups were the main factors in enhancing the antitumor activities.  相似文献   

9.
For the study of DNA conformations, conformational transitions, and DNA-protein interactions, covalently closed supercoiled ColE1-plasmid DNA has been purified from cultures of Escherichia coli harboring this plasmid and grown in the presence of chloramphenicol according to the method of D.B. Clewell [J. Bact. 110 (1972)667]. The open circular and linear forms of the plasmid were prepared by digestion of the covalently closed, supercoiled form with pancreatic deoxyribonuclease and EcoRI-restriction endonuclease, respectively. The linear form was found to be very homogeneous by electron microscopy and sedimenting boundary analysis. Its physical properties (s0 20,w=16.3 S,D0 20,W=1.98 X 10(-8) cm2 s-1 and [eta]=2605 ml g-1) have been carefully determined in 0.2 M NaCl, 0.002 M NaPO4 pH 7.0,0.002 M EDTA, at 23 degrees C. Combination of s0 20, w (obtained by quasielastic laser light scattering) gave Ms,D=4.39 x 10(6). This value is in reasonable agreement with the molecular weight from total intensity laser light scattering M=4.30 x 10(6). The covalently closed and open circular forms of the ColE1-plasmid are less homogeneous due to slight cross-contamination and the presence of small amounts of dimers in these preparations. The weight fractions of the various components as determined by boundary analysis or electron microscopy are given together with the average quantities obtained in the same solvent for the supercoiled form ((s0 20,w)w=25.4 S, (D0 20,w)z=2.89 x 10(-8) cm2 s-1, [eta]= 788 ML G-1,Ms,D=4.69 x 10(6) and Mw=4.59 x 10(6)) and the open circular form (s0 20, w)w=20.1 S, (D0 20,w)z=2.45 x 10(-8) cm2 s-1, [eta]=1421 ml g-1,Ms,D=4.37 x 10(6) and Mw=4.15 x 10(6)). Midpoint analysis of the sedimenting boundaries allows unambiguous determination of the sedimentation coefficients of these two forms: s0 20,w=24.5 S and s0 20,w=18.8 S, respectively. Also deduced from total intensity light scattering were radii of gyration Rg (103.5, 134.2 and 186 nm) and second virial coefficients A2 (0.7, 4.8 AND 5.4 x 10(-4) mole ml/g2) for the supercoiled, the open circular and linear forms, respectively. The data presented are discussed in relation to the conformational parameters for the three forms in solution.  相似文献   

10.
Zhang L  Li X  Xu X  Zeng F 《Carbohydrate research》2005,340(8):1515-1521
A (1-->3)-beta-D-glucan having (1-->6) branching (L-FV-IB) from Lentinus edodes in water was degraded into seven fractions of different molecular weights by ultrasonic irradiation, and each was further fractionated into three parts, by precipitation from water into acetone at room temperature. The weight-average molecular weight (M(w)), radius of gyration ((z)(1/2)), and intrinsic viscosity ([eta]) of lentinan and its fractions in 0.9% NaCl aqueous solution and dimethyl sulfoxide (Me(2)SO) were determined by size-exclusion chromatography combined with multi-angle laser light scattering (SEC-LLS), LLS, and viscometry. Analysis of M(w), [eta], and (z)(1/2) in terms of known theory for worm-like chains yielded 2240 +/- 100 nm(-1), and 100 +/- 10 nm for molar mass per unit contour length (M(L)), and persistence length (q), respectively, corresponding with theoretical data for triple-helical chains. The [alpha](D) of lentinan in water-Me(2)SO mixtures indicated an order-disorder transition. The results indicated that lentinan exists as a triple helix in 0.9% NaCl aqueous solution and as a single flexible chain in Me(2)SO. Assays in vivo and in vitro against the growth of Sarcoma 180 solid tumor as well as the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method for lentinan showed that the triple-helix sample exhibited a relatively high inhibition ratio. Interestingly, the triple-helix lentinan with M(w) of 1.49 x 10(6) exhibited the highest antitumor activity in vivo, having an inhibition ratio (xi) of 49.5%, close to that of 5-fluorouracil (xi = 50.5%), whereas the bioactivity (xi = 12.3%) of its single flexible chains almost disappeared. The triple-helix conformation plays an important role in enhancing the antitumor effects of lentinan.  相似文献   

11.
Alpha-glucan L-FV-II and beta-glucan L-FV-I were shown to co-exist in the extract of fruiting bodies of Lentinus edodes with aq. 5% NaOH/0.05% NaBH4 in previous work. Water-insoluble alpha-(1-->3)-D-glucan (L-FV-II) was treated with sulfur trioxide-pyridine complex at 25 degrees C to synthesize the water-soluble sulfated derivative SL-FV-II with a degree of substitution (DS) 1.1 in non-selective sulfation. The weight-average molecular weight (Mw) of sulfated glucan SL-FV-II is 57% of that of the original alpha-glucan L-FV-II. The alpha-glucan administered by gavaging at a dose of 50 mg/kg of body weight to BALB/C mice having implanted solid Sarcoma 180 was effective at an inhibition rate of 42%. In vitro experiments using human and murine tumor cell lines showed that SL-FV-II had antiproliferation activity at the concentration of 20 microg/mL towards four tumor cell lines. The sulfated alpha-(1-->3)-D-glucan had potent antiproliferation action (52%) on human MCF-7 breast carcinoma cells.  相似文献   

12.
Solution properties of tragacanthin (the water-soluble part of gum tragacanth) were studied by gel permeation chromatography (GPC) combined with multi-angle light scattering and viscometry at 25 degrees C. Photon correlation spectroscopy was used to determine the hydrodynamic radius. Ultrasonic degradation was applied to obtain biopolymer fractions of different molecular weights. The dependence of intrinsic viscosity [eta] and radius of gyration (s2)z(1/2) on weight average molecular mass M(w) for this biopolymer were found to be [eta] = 9.077 x 10(-5) M(w)(0.87) (dL g(-1)) and (s2)z(1/2) in the range of M(w) from 1.8 x 10(5) to 1.6 x 10(6). The conformational parameters of tragacanthin were calculated to be 1111 nm for molar mass per unit contour length (M(L)), 26 nm for persistence length (q) and 1.87 ratio of R(g)/R(h). It was found that the Smidsr?d parameter B, the empirical stiffness parameter was 0.013, which is lower than that of several polysaccharides indicating the stiff backbone for tragacanthin. The rheological behavior of aqueous solutions of gum tragacanth and its insoluble and soluble fractions (bassorin and tragacanthin, respectively) were studied. For concentrations equal to 1%, at 25 degrees C and in the absence of salt, bassorin solution showed the highest viscosity and shear thinning behaviour. Power law and Williamson models were used to describe the rheological behaviour of bassorin and tragacanthin, respectively. Oscillatory shear experiments showed a gel like structure for the bassorin but for tragacanthin the oscillatory data were as would be expected for semi-dilute to concentrated solution of entangled, random coil polymers. NaCl changed the steady and oscillatory rheological properties of both fractions and in this way the final viscosity of bassorin was even less than tragacanthin. The calculated activation energy for bassorin and tragacanthin indicated a more rapid decrease in viscosity with temperature for tragacanthin. The plot of eta(sp,0) versus C[eta] revealed that the transition from dilute to semi-dilute regime occurs at C*[eta] = 2.82 for tragacanthin.  相似文献   

13.
Tao Y  Zhang L  Yan F  Wu X 《Biomacromolecules》2007,8(7):2321-2328
Water-insoluble polysaccharide (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was identified as a hyperbranched beta-d-glucan from the results of one- and two-dimensional NMR and GC-MS analysis. The degree of branching of TM3a is 65.5%. TM3a was fractionated by using a non-solvent addition method into 14 fractions, and its solution properties in 0.25 M LiCl/dimethylsulfoxide (DMSO) solution were studied systematically by using static laser light scattering, dynamic light scattering, and viscometry at 25 degrees C. The dependences among the values of intrinsic viscosity ([eta]), radius of gyration (z 1/2), and hydradynamic radius (Rh) on weight-average molecular weight (Mw) were found as the following: [eta] = 0.46Mw0.30+/-0.01, z 1/2 = 4.79 x 10-2Mw0.43+/-0.04, and Rh = 5.01 x 10-2Mw0.41+/-0.02 in the Mw range from 1.94 x 105 to 2.06 x 107 for TM3a in a 0.25 M LiCl/DMSO solution at 25 degrees C. The current theory of polymer solution was applied to explain the relationship among the fractal dimension, ratio of geometric to hydrodynamic radius (rho = z 1/2/Rh), and MwA2/[eta] of TM3a. The results indicated that TM3a existed as a compact chain conformation with a sphere-like structure in LiCl/DMSO solution. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules with an average diameter of 23.0 +/- 1.8 nm.  相似文献   

14.
During iron acquisition by the cell, complete homodimeric transferrin receptor 1 in an unknown state (R1) binds iron-loaded human serum apotransferrin in an unknown state (T) and allows its internalization in the cytoplasm. T also forms complexes with metals other than iron. Are these metals incorporated by the iron acquisition pathway and how can other proteins interact with R1? We report here a four-step mechanism for cobalt(III) transfer from CoNtaCO(3)(2-) to T and analyze the interaction of cobalt-loaded transferrin with R1. The first step in cobalt uptake by T is a fast transfer of Co(3+) and CO(3)(2-) from CoNtaCO(3)(2-) to the metal-binding site in the C-lobe of T: direct rate constant, k(1)=(1.1+/-0.1) x 10(6) M(-1) s(-1); reverse rate constant, k(-1)=(1.9+/-0.6) x 10(6) M(-1) s(-1); and equilibrium constant, K=1.7+/-0.7. This step is followed by a proton-assisted conformational change of the C-lobe: direct rate constant, k(2)=(3+/-0.3) x 10(6) M(-1) s(-1); reverse rate constant, k(-2)=(1.6+/-0.3) x 10(-2) s(-1); and equilibrium constant, K(2a)=5.3+/-1.5 nM. The two final steps are slow changes in the conformation of the protein (0.5 h and 72 h), which allow it to achieve its final thermodynamic state and also to acquire second cobalt. The cobalt-saturated transferrin in an unknown state (TCo(2)) interacts with R1 in two different steps. The first is an ultra-fast interaction of the C-lobe of TCo(2) with the helical domain of R1: direct rate constant, k(3)=(4.4+/-0.6)x10(10) M(-1) s(-1); reverse rate constant, k(-3)=(3.6+/-0.6) x 10(4) s(-1); and dissociation constant, K(1d)=0.82+/-0.25 muM. The second is a very slow interaction of the N-lobe of TCo(2) with the protease-like domain of R1. This increases the stability of the protein-protein adduct by 30-fold with an average overall dissociation constant K(d)=25+/-10 nM. The main trigger in the R1-mediated iron acquisition is the ultra-fast interaction of the metal-loaded C-lobe of T with R1. This step is much faster than endocytosis, which in turn is much faster than the interaction of the N-lobe of T with the protease-like domain. This can explain why other metal-loaded transferrins or a protein such as HFE-with a lower affinity for R1 than iron-saturated transferrin but with, however, similar or higher affinities for the helical domain than the C-lobe-competes with iron-saturated transferrin in an unknown state towards interaction with R1.  相似文献   

15.
A procedure is described for the preparation of large amounts of guar galactomannan by acid hydrolysis that yields samples of various molecular weights (MW) with uniform polydispersity. This contrasts with preparation by enzymatic degradation that yields samples with a marked increase in polydispersity and a much broader molecular weight distribution (MWD). Acid hydrolyzed guar samples had a Mark-Houwink-Sakurada (MHS) relationship of [eta]=3.04x10(-4) M(w)(0.747) dl/g and a characteristic ratio of 11.87 as determined by gel permeation chromatography (GPC) and dilute solution viscometry. The Huggins coefficient for degraded guars is much smaller (approximately 0.4) than that of the native guar (approximately 0.79), suggesting a weakening of intermolecular association in guar prepared by acid hydrolysis.  相似文献   

16.
The [Ru(II)(Hedta)NO(+)] complex is a diamagnetic species crystallizing in a distorted octahedral geometry, with the Ru-N(O) length 1.756(4) A and the RuNO angle 172.3(4) degrees . The complex contains one protonated carboxylate (pK(a)=2.7+/-0.1). The [Ru(II)(Hedta)NO(+)] complex undergoes a nitrosyl-centered one-electron reduction (chemical or electrochemical), with E(NO+/NO)=-0.31 V vs SCE (I=0.2 M, pH 1), yielding [Ru(II)(Hedta)NO](-), which aquates slowly: k(-NO)=2.1+/-0.4x10(-3) s(-1) (pH 1.0, I=0.2 M, CF(3)COOH/NaCF(3)COO, 25 degrees C). At pHs>12, the predominant species, [Ru(II)(edta)NO](-), reacts according to [Ru(II)(edta)NO](-)+2OH(-)-->[Ru(II)(edta)NO(2)](3-), with K(eq)=1.0+/-0.4 x 10(3) M(-2) (I=1.0 M, NaCl; T=25.0+/-0.1 degrees C). The rate-law is first order in each of the reactants for most reaction conditions, with k(OH(-))=4.35+/-0.02 M(-1)s(-1) (25.0 degrees C), assignable mechanistically to the elementary step comprising the attack of one OH(-) on [Ru(II)(edta)NO](-), with subsequent fast deprotonation of the [Ru(II)(edta)NO(2)H](2-) intermediate. The activation parameters were DeltaH(#)=60+/-1 kJ/mol, DeltaS(#)=-31+/-3 J/Kmol, consistent with a nucleophilic addition process between likely charged ions. In the toxicity up-and-down tests performed with Swiss mice, no death was observed in all the doses administered (3-9.08 x 10(-5) mol/kg). The biodistribution tests performed with Wistar male rats showed metal in the liver, kidney, urine and plasma. Eight hours after the injection no metal was detected in the samples. The vasodilator effect of [Ru(II)(edta)NO](-) was studied in aortic rings without endothelium, and was compared with sodium nitroprusside (SNP). The times of maximal effects of [Ru(II)(edta)NO](-) and SNP were 2 h and 12 min, respectively, suggesting that [Ru(II)(edta)NO](-) releases NO slowly to the medium in comparison with SNP.  相似文献   

17.
Wu Y  Hu N  Pan Y  Zhou L  Zhou X 《Carbohydrate research》2007,342(6):870-875
Cordyceps sinensis is a well known tonic food or invigorant with broad-spectrum medicinal properties that is widely used in the People's Republic of China. A neutral mannoglucan 1 with a molar mass of approximately 7.7x10(3) Da was obtained from the 0.05 M acetate buffer extract of C. sinensis mycelium. It had [alpha](D)(20)+126 (c 0.2, H(2)O) and consisted of Man and Glc units in the molar ratio of 1:9. A combination of chemical analysis and NMR and IR spectroscopy together with digestion with alpha-D-amylase showed 1 to have a alpha-D-glucan backbone with (1-->4)- and (1-->3)-linkages, and the side chains of alpha-D-(1-->6)-Manp were attached to the backbone via O-6 of alpha-(1-->3)-Glcp residues. Compound 1 showed weak cytotoxicity activity against SPC-I (IC(50)=63 microg/mL) cancer line, and no obvious cytotoxicity activities against BCAP37 (IC(50)>100 microg/mL) and SW480 (IC(50)>100 microg/mL) cancer lines.  相似文献   

18.
The specific volumes of six 1,2-diacylphosphatidylcholines with monounsaturated acyl chains (diCn:1PC, n=14-24 is the even number of acyl chain carbons) in fluid bilayers in multilamellar vesicles dispersed in H(2)O were determined by the vibrating tube densitometry as a function of temperature. From the data obtained with diCn:1PC (n=14-22) vesicles in combination with the densitometric data from Tristram-Nagle et al. [Tristram-Nagle, S., Petrache, H.I., Nagle, J.F., 1998. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917-925.] and Koenig and Gawrisch [Koenig, B.W., Gawrisch, K., 2005. Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim. Biophys. Acta 1715, 65-70.], the component volumes of phosphatidylcholines in fully hydrated fluid bilayers at 30 degrees C were obtained. The volume of the acyl chain CH and CH(2) group is V(CH)=22.30 A(3) and V(CH2) =A(3), respectively. The volume of the headgroup including the glyceryl and acyl carbonyls, V(H), and the ratio of acyl chain methyl and methylene group volumes, r=V(CH3):V(CH2) are linearly interdependent: V(H)=a-br, where a=434.41 A(3) and b=-55.36 A(3) at 30 degrees C. From the temperature dependencies of component volumes, their isobaric thermal expansivities (alpha(X)=V(X)(-1)(partial differential V(X)/ partial differential T) where X=CH(2), CH, or H were calculated: alpha(CH2)=118.4x10(-5)K(-1), alpha(CH)=71.0x10(-5)K(-1), alpha(H)=7.9x10(-5)K(-1) (for r=2) and alpha(H)=9.6x10(-5)K(-1) (for r=1.9). The specific volume of diC24:1PC changes at the main gel-fluid phase transition temperature, t(m)=26.7 degrees C, by 0.0621 ml/g, its specific volume is 0.9561 and 1.02634 ml/g at 20 and 30 degrees C, respectively, and its isobaric thermal expansivity alpha=68.7x10(-5) and 109.2x10(-5)K(-1) below and above t(m), respectively. The component volumes and thermal expansivities obtained can be used for the interpretation of X-ray and neutron scattering and diffraction experiments and for the guiding and testing molecular dynamics simulations of phosphatidylcholine bilayers in the fluid state.  相似文献   

19.
Lasey RC  Liu L  Zang L  Ogawa MY 《Biochemistry》2003,42(13):3904-3910
Photoinduced electron-transfer (ET) occurs between a negatively charged metallopeptide, [Ru(bpy)(2)(phen-am)-Cys-(Glu)(5)-Gly](3-) = RuCE(5)G, and ferricytochrome c = Cyt c. In the presence of Cyt c, the triplet state lifetime of the ruthenium metallopeptide is shortened, and the emission decays via biexponential kinetics, which indicates the existence of two excited-state populations of ruthenium peptides. The faster decay component displays concentration-independent kinetics demonstrating the presence of a preformed peptide-protein complex that undergoes intra-complex electron-transfer. Values of K(b) = (3.5 +/- 0.2) x 10(4) M(-1) and k(obs)(ET)= (2.7 +/- 0.4) x 10(6) s(-1) were observed at ambient temperatures. The magnitude of k(obs)(ET) decreases with increasing solvent viscosity, and the behavior can be fit to the expression k(obs)(ET) proportional to eta(-alpha) to give alpha = 0.59 +/- 0.05. The electron-transfer process occurring in the preformed complex is therefore gated by a rate-limiting configurational change of the complex. The slower decay component displays concentration-dependent kinetics that saturate at high concentrations of Cyt c. Analysis according to rapid equilibrium formation of an encounter complex that undergoes unimolecular electron-transfer yields K(b)' = (2.5 +/- 0.7) x 10(4) M(-1) and k(obs')(ET)= (7 +/- 3) x 10(5) s(-1). The different values of k(obs)(ET) and k(obs')(ET) suggest that the peptide lies farther from the heme when in the encounter complex. The value of k(obs')(ET) is viscosity dependent indicating that the reaction occurring within the encounter complex is also configurationally gated. A value of alpha = 0.98 +/- 0.14 is observed for k(obs')(ET), which suggests that the rate-limiting gating processes in the encounter complex is different from that in the preformed complex.  相似文献   

20.
Song JF  He P  Guo W 《Analytical biochemistry》2002,304(2):212-219
The polarographic catalytic wave of vitamin P in the presence of persulfate was studied by linear potential scan polarography and cyclic voltammetry. Vitamin P yielded a single reduction wave in acidic aqueous solution, which was ascribed to a 2e(-), 2H(+) reduction of the carbonyl group in the C-4 position. Actually, the carbonyl group C=O first underwent a 1e(-), 1H(+) reduction to form a neutral free radical, and the further 1e(-), 1H(+) reduction of the free radical was simultaneous with its following chemical reactions. When S(2)O(2-)(8) was present, the free radical of vitamin P was oxidized by both S(2)O(2-)(8) and its reduction intermediate, the sulfate radical anion SO(*-)(4), to regenerate the original, which resulted in the production of a polarographic catalytic wave of vitamin P. Based on this catalytic wave, a novel method for the determination of vitamin P was proposed. In 0.02 M tartaric acid-sodium tartrate (pH 3.3) buffer containing 5.0 x 10(-3) M K(2)S(2)O(8), the peak potential of the catalytic wave was -1.42 V (vs SCE) and the peak current was rectilinear to the vitamin P concentration in the range of 8.0 x 10(-9)-1.0 x 10(-6) M (r = 0.9994, n = 13). The catalytic wave of 2.0 x 10(-7) M vitamin P enhanced the polarographic current 70 times compared with the corresponding reduction wave. The detection limit was 2.0 x 10(-9) M, and the relative standard deviation at the 2.0 x 10(-7) M level was 0.7% (n = 15). The proposed method was used for the determination of vitamin P content in the pharmaceutical preparation of tablets and the medicinal plant Sophora japonica L. without previous separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号