首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.  相似文献   

2.
The neural crest is a migratory population of cells that produces many diverse structures within the embryo. Trunk neural crest cells give rise to such structures as the dorsal root ganglia (DRG) and sympathetic ganglia (SG), which form in a metameric pattern along the anterior-posterior axis of the embryo. While static analyses have provided invaluable information concerning the development of these structures, time-lapse imaging of neural crest cells navigating through their normal environment could potentially reveal previously unidentified cellular and molecular interactions integral to DRG and SG development. In this study, we follow fluorescently labeled trunk neural crest cells using a novel sagittal explant and time-lapse confocal microscopy. We show that along their dorsoventral migratory route, trunk neural crest cells are highly motile and interact extensively with neighboring cells and the environment, with many cells migrating in chain-like formations. Surprisingly, the segregated pattern of crest cell streams through the rostral somite is not maintained once these cells arrive alongside the dorsal aorta. Instead, neural crest cells disperse along the ventral outer border of the somite, interacting extensively with each other and their environment via dynamic extension and retraction of filopodia. Discrete sympathetic ganglia arise as a consequence of intermixing and selective reorganization of neural crest cells at the target site. The diverse cell migratory behaviors and active reorganization at the target suggest that cell-cell and cell-environment interactions are coordinated with dynamic molecular processes.  相似文献   

3.
Light sheet microscopy is the ideal imaging technique to study zebrafish embryonic development. Due to minimal photo-toxicity and bleaching, it is particularly suited for long-term time-lapse imaging over many hours up to several days. However, an appropriate sample mounting strategy is needed that offers both confinement and normal development of the sample. Multilayer mounting, a new embedding technique using low-concentration agarose in optically clear tubes, now overcomes this limitation and unleashes the full potential of light sheet microscopy for real-time developmental biology.  相似文献   

4.
Vertebrate palatogenesis is a highly choreographed and complex developmental process, which involves migration of cranial neural crest (CNC) cells, convergence and extension of facial prominences, and maturation of the craniofacial skeleton. To study the contribution of the cranial neural crest to specific regions of the zebrafish palate a sox10: kaede transgenic zebrafish line was generated. Sox10 provides lineage restriction of the kaede reporter protein to the neural crest, thereby making the cell labeling a more precise process than traditional dye or reporter mRNA injection. Kaede is a photo-convertible protein that turns from green to red after photo activation and makes it possible to follow cells precisely. The sox10: kaede transgenic line was used to perform lineage analysis to delineate CNC cell populations that give rise to maxillary versus mandibular elements and illustrate homology of facial prominences to amniotes. This protocol describes the steps to generate a live time-lapse video of a sox10: kaede zebrafish embryo. Development of the ethmoid plate will serve as a practical example. This protocol can be applied to making a time-lapse confocal recording of any kaede or similar photoconvertible reporter protein in transgenic zebrafish. Furthermore, it can be used to capture not only normal, but also abnormal development of craniofacial structures in the zebrafish mutants.  相似文献   

5.
Live imaging of lymphatic development in the zebrafish   总被引:8,自引:0,他引:8  
The lymphatic system has become the subject of great interest in recent years because of its important role in normal and pathological processes. Progress in understanding the origins and early development of this system, however, has been hampered by difficulties in observing lymphatic cells in vivo and in performing defined genetic and experimental manipulation of the lymphatic system in currently available model organisms. Here, we show that the optically clear developing zebrafish provides a useful model for imaging and studying lymphatic development, with a lymphatic system that shares many of the morphological, molecular and functional characteristics of the lymphatic vessels found in other vertebrates. Using two-photon time-lapse imaging of transgenic zebrafish, we trace the migration and lineage of individual cells incorporating into the lymphatic endothelium. Our results show lymphatic endothelial cells of the thoracic duct arise from primitive veins through a novel and unexpected pathway.  相似文献   

6.
The study of nervous system development has been greatly facilitated by recent advances in molecular biology and imaging techniques. These approaches are perfectly suited to young transparent zebrafish where they have allowed direct observation of neural circuit assembly in vivo. In this review we will highlight a number of key studies that have applied optical and genetic techniques in zebrafish to address questions relating to axonal and dendritic arbor development,synapse assembly and neural plasticity. These studies have revealed novel cellular phenomena and modes of growth that may reflect general principles governing the assembly of neural circuits.  相似文献   

7.
The field of axon guidance is taking advantage of the powerful genetic and imaging tools that are now available to visualise growth behaviour in living cells, both in vivo and in real time. We have developed a method to visualise individual neurons within the living zebrafish embryo which provides exceptional cellular resolution of growth cones and their filopodia. We generated a DNA construct in which the HuC promoter drives expression of eGFP. Injection of the plasmid into single cell fertilised zebrafish egg resulted in mosaic expression of eGFP in neurons throughout the developing embryo. By manipulating the concentration of injected plasmid, it was possible to optimise the numbers of neurons that expressed the construct so that individual growth cones could be easily visualised. We then used time-lapse high magnification widefield epifluorescence microscopy to visualise the growth cones as they were exploring their environment. Growth cones both near the surface of the embryo as well as deep within the developing brain of embryos at 20?h post fertilisation were clearly imaged. With time-lapse sequence imaging with intervals between frames as frequent as 1?s there was minimal loss of fluorescence intensity and the dynamic nature of the growth cones became evident. This method therefore provides high magnification, high resolution time-lapse imaging of living neurons in vivo and by use of widefield epifluorescence rather than confocal it is a relatively inexpensive microscopy method.  相似文献   

8.
9.
In the developing heart, time-lapse imaging is particularly challenging. Changes in heart morphology due to tissue growth or long-term reorganization are difficult to follow because they are much subtler than the rapid shape changes induced by the heartbeat. Therefore, imaging heart development usually requires slowing or stopping the heart. This, however, leads to information loss about the unperturbed heart shape and the dynamics of heart function. To overcome this limitation, we have developed a non-invasive heart imaging technique to jointly document heart function (at fixed stages of development) as well as its morphogenesis (at any fixed phase in the heartbeat) that does not require stopping or slowing the heart. We review the challenges for imaging heart development and our methodology, which is based on computationally combining and analyzing multiple high-speed image sequences acquired throughout the course of development. We present results obtained in the developing zebrafish heart. Image analysis of the acquired data yielded blood flow velocity maps and made it possible to follow the relative movement of individual cells over several hours.Key words: cardiac imaging, zebrafish, fluorescence imaging, heart development, registration, fast imaging  相似文献   

10.
Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function1,2. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.Download video file.(49M, mov)  相似文献   

11.
Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.  相似文献   

12.
Zebrafish have long been utilized to study the cellular and molecular mechanisms of development by time-lapse imaging of the living transparent embryo. Here we describe a method to mount zebrafish embryos for long-term imaging and demonstrate how to automate the capture of time-lapse images using a confocal microscope. We also describe a method to create controlled, precise damage to individual branches of peripheral sensory axons in zebrafish using the focused power of a femtosecond laser mounted on a two-photon microscope. The parameters for successful two-photon axotomy must be optimized for each microscope. We will demonstrate two-photon axotomy on both a custom built two-photon microscope and a Zeiss 510 confocal/two-photon to provide two examples.Zebrafish trigeminal sensory neurons can be visualized in a transgenic line expressing GFP driven by a sensory neuron specific promoter 1. We have adapted this zebrafish trigeminal model to directly observe sensory axon regeneration in living zebrafish embryos. Embryos are anesthetized with tricaine and positioned within a drop of agarose as it solidifies. Immobilized embryos are sealed within an imaging chamber filled with phenylthiourea (PTU) Ringers. We have found that embryos can be continuously imaged in these chambers for 12-48 hours. A single confocal image is then captured to determine the desired site of axotomy. The region of interest is located on the two-photon microscope by imaging the sensory axons under low, non-damaging power. After zooming in on the desired site of axotomy, the power is increased and a single scan of that defined region is sufficient to sever the axon. Multiple location time-lapse imaging is then set up on a confocal microscope to directly observe axonal recovery from injury. Open in a separate windowClick here to view.(76M, flv)  相似文献   

13.
In contrast to the classical assumption that neural crest cells are induced in chick as the neural folds elevate, recent data suggest that they are already specified during gastrulation. This prompted us to map the origin of the neural crest and dorsal neural tube in the early avian embryo. Using a combination of focal dye injections and time-lapse imaging, we find that neural crest and dorsal neural tube precursors are present in a broad, crescent-shaped region of the gastrula. Surprisingly, static fate maps together with dynamic confocal imaging reveal that the neural plate border is considerably broader and extends more caudally than expected. Interestingly, we find that the position of the presumptive neural crest broadly correlates with the BMP4 expression domain from gastrula to neurula stages. Some degree of rostrocaudal patterning, albeit incomplete, is already evident in the gastrula. Time-lapse imaging studies show that the neural crest and dorsal neural tube precursors undergo choreographed movements that follow a spatiotemporal progression and include convergence and extension, reorientation, cell intermixing, and motility deep within the embryo. Through these rearrangement and reorganization movements, the neural crest and dorsal neural tube precursors become regionally segregated, coming to occupy predictable rostrocaudal positions along the embryonic axis. This regionalization occurs progressively and appears to be complete in the neurula by stage 7 at levels rostral to Hensen's node.  相似文献   

14.
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).  相似文献   

15.
Rapid advances in microscopy and genetic labeling strategies have created new opportunities for time-lapse imaging of embryonic development. However, methods for immobilizing embryos for long periods while maintaining normal development have changed little. In zebrafish, current immobilization techniques rely on the anesthetic tricaine. Unfortunately, prolonged tricaine treatment at concentrations high enough to immobilize the embryo produces undesirable side effects on development. We evaluate three alternative immobilization strategies: combinatorial soaking in tricaine and isoeugenol, injection of α-bungarotoxin protein, and injection of α-bungarotoxin mRNA. We find evidence for co-operation between tricaine and isoeugenol to give immobility with improved health. However, even in combination these anesthetics negatively affect long-term development. α-bungarotoxin is a small protein from snake venom that irreversibly binds and inactivates acetylcholine receptors. We find that α-bungarotoxin either as purified protein from snakes or endogenously expressed in zebrafish from a codon-optimized synthetic gene can immobilize embryos for extended periods of time with few health effects or developmental delays. Using α-bungarotoxin mRNA injection we obtain complete movies of zebrafish embryogenesis from the 1-cell stage to 3 days post fertilization, with normal health and no twitching. These results demonstrate that endogenously expressed α-bungarotoxin provides unprecedented immobility and health for time-lapse microscopy.  相似文献   

16.
The mechanisms of blood vessel formation have become a subject of enormous scientific and clinical interest. However, it is difficult to visualize the developing vasculature in most living animals due to the ubiquitous and deep localization of vessels within other tissues. The establishment of vascular-specific transgenic zebrafish with fluorescently "tagged" blood vessels has facilitated high-resolution imaging studies of developing blood and lymphatic vessels in vivo. Use of these transgenic lines for genetic and chemical screening, experimental manipulations, and time-lapse imaging has extended our knowledge of how complex networks of vessels assemble in vivo.  相似文献   

17.
Flow-structure interactions are ubiquitous in nature, and are important factors in the proper development of form and function in living organisms. In order to uncover the mechanisms by which flow-structure interactions affect vertebrate development, we first need to establish the techniques necessary to quantitatively describe the fluid flow environment within the embryo. To do this, we must bring dynamic, in vivo imaging methods to bear on living systems. Traditional avian and mammalian model systems can be problematic in this regard. The zebrafish (Danio rerio) is widely accepted as an excellent model organism for the study of vertebrate biology, as it shows substantial anatomical and genetic conservation with higher vertebrates, including humans. Their small size, optical transparency, and external development make zebrafish the ideal model system for dynamic imaging. This article reviews the current state of research in imaging biofluid flow within and around developing zebrafish embryos, with an emphasis on dynamic imaging modalities.  相似文献   

18.
Dong Z  Yang N  Yeo SY  Chitnis A  Guo S 《Neuron》2012,74(1):65-78
Asymmetric division of progenitor/stem cells generates both self-renewing and differentiating progeny and is fundamental to development and regeneration. How this process is regulated in the vertebrate brain remains incompletely understood. Here, we use time-lapse imaging to track radial glia progenitor behavior in the developing zebrafish brain. We find that asymmetric division invariably generates a basal self-renewing daughter and an apical differentiating sibling. Gene expression and genetic mosaic analysis further show that the apical daughter is the source of Notch ligand that is essential to maintain higher Notch activity in the basal daughter. Notably, establishment of this intralineage and directional Notch signaling requires the intrinsic polarity regulator Partitioning defective protein-3 (Par-3), which segregates the fate determinant Mind bomb unequally to the apical daughter, thereby restricting the self-renewal potential to the basal daughter. These findings reveal with single-cell resolution how self-renewal and differentiation become precisely segregated within asymmetrically dividing neural progenitor/stem lineages.  相似文献   

19.
20.
《Organogenesis》2013,9(4):248-255
In the developing heart, time-lapse imaging is particularly challenging. Changes in heart morphology due to tissue growth or long-term reorganization are difficult to follow because they are much subtler than the rapid shape changes induced by the heartbeat. Therefore, imaging heart development usually requires slowing or stopping the heart. This, however, leads to information loss about the unperturbed heart shape and the dynamics of heart function. To overcome this limitation, we have developed a non-invasive heart imaging technique to jointly document heart function (at fixed stages of development) as well as its morphogenesis (at any fixed phase in the heartbeat) that does not require stopping or slowing the heart. We review the challenges for imaging heart development and our methodology, which is based on computationally combining and analyzing multiple high-speed image sequences acquired throughout the course of development. We present results obtained in the developing zebrafish heart. Image analysis of the acquired data yielded blood flow velocity maps and made it possible to follow the relative movement of individual cells over several hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号