首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of HL-60 cells with staurosporine (STS) induced mitochondrial cytochrome c efflux into the cytosol, which was followed by caspase-3 activation and apoptosis. Consistent with these observations, in vitro experiments demonstrated that, except for cytochrome c, the cytosol of HL-60 cells contained sufficient amounts of all factors required for caspase-3 activation. In contrast, treatment of HCW-2 cells (an apoptotic-resistant HL-60 subclone) with STS failed to induce significant amounts of mitochondrial cytochrome c efflux, caspase-3 activation, and apoptosis. In vitro assays strongly suggested that a lack of cytochrome c in the cytosol was the primary limiting factor for caspase-3 activation in HCW-2 cells. To explore the mechanism which regulates mitochondrial cytochrome c efflux, we developed an in vitro assay which showed that cytosolic extracts from STS-treated, but not untreated, HL-60 cells contained an activity, which we designated 'CIF' (cytochrome c-efflux inducing factor), which rapidly induced cytochrome c efflux from HL-60 mitochondria. In contrast, there was no detectable CIF activity in STS-treated HCW-2 cells although the mitochondria from HCW-2 cells were responsive to the CIF activity from STS-treated HL-60 cells. These experiments have identified a novel activity, CIF, which is required for cytochrome c efflux and they indicate that the absence of CIF is the biochemical explanation for the impaired ability of HCW-2 cells to activate caspase-3 and undergo apoptosis.  相似文献   

2.
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

3.
《Autophagy》2013,9(5):629-640
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunonoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

4.
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.  相似文献   

5.
It has been suggested that BCL-2 family members associate with certain organelles through their hydrophobic C-terminus which in the case of bcl-2, appears to play a key role in the regulation of apoptosis. We have investigated the association of bax with microsomal, nuclear and mitochondrial membranes using a cell-free system and found, contrary to bcl-2, that bax binds poorly to these organelles. Deletion of the C-terminal of bax (baxDeltaC) or exchanging the C-terminal ends of bax and bcl-XL suggests that the bax C-terminus is not an addressing/anchoring signal. In agreement with this observation, HL-60 cells transfected with either bax or baxDeltaC show no difference in sensitivity to an apoptotic signal. In the cell-free system, at low pH, bax becomes associated with mitochondria after a change of conformation, a result consistant with its structural homology with certain bacterial toxins. In HL-60 cells, as observed in the cell-free system, bax acquired a protease resistant conformation upon its translocation from the cytosol to the mitochondria after the induction of apoptosis.  相似文献   

6.
Zhang QH  Sheng HP  Loh TT 《Life sciences》1999,65(16):1715-1723
bcl-2 has been shown to enhance cell survival by inhibiting apoptosis. The present study investigates the potential role of bcl-2 on apoptosis in HL-60 cells induced by different agents. HL-60/bcl-2 and control HL-60/neo cells were obtained by transfection of bcl-2 cDNA or the neomycin-resistant gene, respectively. Staurosporine (STS) promoted DNA fragmentation dose-dependently in the 6 h exposure assay while C2-ceramide was relatively slow in the induction of apoptosis (approximately 40% after 24 h) and required higher concentrations (> 20 microM). Caspases inhibitors, Ac-YVAD-cmk (100 microM) and zVAD-fmk (20 microM) had no effect on DNA fragmentation themselves. However, they blocked C2-ceramide-induced caspase-3 cleavage and apoptosis, but not the release of cytochrome c from the mitochondria. In addition, we found that both Ac-YVAD-cmk and zVAD-fmk failed to protect STS-induced apoptosis in HL-60 cells. Overexpression of bcl-2 inhibited STS and C2-ceramide induced cytochrome c redistribution, caspase-3 activation and apoptosis. These results suggest a protective role of bcl-2 in the regulation of apoptosis and cytochrome c release is unlikely to be involved in the final common pathway in apoptosis.  相似文献   

7.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

8.
The onset of resistance to drug-induced apoptosis of tumour cells is a major problem in cancer therapy. We studied a drug-selected clone of promyelocytic HL-60 cells, called HCW-2, which display a complex resistance to a wide variety of apoptosis-inducing agents and we found that these cells show a dramatic increase in the expression of heat shock proteins (Hsps) 70 and 27, while the parental cell line does not. It is known that stress proteins such as Hsps can confer resistance to a variety of damaging agents other than heat shock, such as TNF-alpha, monocyte-induced cytotoxicity, and also play a role in resistance to chemotherapy. This elevated expression of Hsps is paralleled by an increased activity of mitochondrial metabolism and pentose phosphate pathway, this latter leading to high levels of glucose-6-phosphate dehydrogenase and, consequently, of glutathione. Thus, the apoptotic-deficient phenotype is likely because of the presence of high levels of stress response proteins and GSH, which may confer resistance to apoptotic agents, including chemotherapy drugs. Moreover, the fact that in HCW-2 cells Hsp70 are mainly localised in mitochondria may account for the increased performances of mitochondrial metabolism. These observations could have some implications for the therapy of cancer, and for the design of combined strategies that act on antioxidant defences of the neoplastic cell.  相似文献   

9.
Although UV is known to induce apoptotic cell death to various animal cells, relationship between cell cycle and UV-induced apoptosis is still unclear. In this study, we investigated the role of G1 phase in UV-induced apoptosis by using EL-4 mouse lymphoma cells which have wild type p53. After 500 J/m UV irradiation, an increase of apoptotic fraction was accompanied by cell cycle accumulation in the G1 phase. Apoptotic fraction after UV-exposure was remarkably augmented by treatment with 2-AP, a G1 checkpoint inhibitor. In contrast, aphidicolin, an inhibitor of DNA polymerase , suppressed the rate of apoptotic fraction.These results suggest that mandatory cell cycle progression from G1 to S leaves the damaged DNA unrepaired and may increase the apoptotic fraction. To investigate the precise mechanism in the G1 phase, UV was exposed to the G1-synchronized cells and apoptotic fraction was serially observed. Synchronized EL-4 cells passed through the G1 phase in 8 h. Within the G1 phase, late-G1 cells (6 h after M) were more sensitive to UV-induced apoptosis than early-G1 cells (2 h after M) (49.7 ± 9.0% vs. 41.5 ± 8.5%, p < 0.05). In HL-60 cells, lacking in p53 expression, such a difference was not observed. Western blot analysis revealed that expression of p53 in synchronized EL-4 cells was increasingly enhanced during G1 phase. After UV-exposure, p53 expression gradually decreased in early-G1 cells, but it was kept at almost the same level in late-G1 cells. In addition, bcl-2 expression in early-G1 cells showed a more rapid and larger increase than that in late-G1 cells. These results suggest that susceptibility of the G1 cells to UV-induced apoptosis depends on their position within the G1 phase, and late-G1 is more sensitive than early-G1. Sensitivity to UV-induced apoptosis is closely related to the expression level of p53 and bcl-2 proteins. Early-G1 cells may be able to take enough time to repair damaged DNA until they reach the G1 checkpoint compared to the late-G1 cells.  相似文献   

10.
To understand the potential influence of spindle checkpoint function in response to arsenic trioxide (ATO)-induced apoptosis observed in cancer cell lines, we examined the correlation between activation of the spindle checkpoint and susceptibility to ATO-induced apoptosis in 10 cancer cell lines lacking functional p53. The ability to functionally activate the spindle checkpoint in each cancer cell line was assessed by the induction of mitotic arrest after Taxol treatment. Bromodeoxyuridine (BrdU) pulse-chase analysis of Taxol-treated cell lines with low mitotic arrest showed that they were not arrested at mitosis but divided abnormally, confirming that spindle checkpoint activation was impaired in these cell lines. Our results demonstrate that apoptosis was significantly induced by ATO in cancer cell lines with functional activation of the spindle checkpoint and substantial induction of mitotic arrest. Cell lines with negligible mitotic arrest exhibited little ATO-induced apoptosis. However, no such correlation was observed following treatment of cells with camptothecin, a topoisomerase I inhibitor. Furthermore, attenuation of the spindle checkpoint function by small interfering RNA-mediated silencing of BubR1 and Mad2 in cancer cells that were susceptible to ATO-induced mitotic arrest and apoptosis greatly reduced the induction of mitotic arrest and apoptosis by ATO and increased the formation of micronuclei or multinuclei in survived cells. The marked correlation between ATO-induced mitotic arrest and apoptosis indicates that the induction of apoptosis by ATO was highly dependent on the functional activation of the spindle checkpoint in cancer cells lacking normal p53 function.  相似文献   

11.
Using a cytofluorimetric approach, we studied intramitochondrial cardiolipin (CL) distribution in HCW-2 cells, an apoptosis-resistant clone of human HL-60 cells. In HL-60, about 50% of total CL is distributed in the outer leaflet of mitochondrial inner membrane, while in HCW-2 a significantly higher amount of CL (about 65%) is in that site. In basal conditions, HSW-2 cells also show a reduced mitochondrial membrane potential even if they are able to proliferate as the parental line. Taking into account the complex functions that CL plays in the regulation of mitochondrial activity, it is likely that HCW-2 could produce ATP utilizing more glycolytic pathways rather than mitochondrial respiratory chain.  相似文献   

12.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

13.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

14.
This work compares effect of histondeacetylase inhibitor, valproic acid (VA), on proliferation, differentiation and apoptosis induction in two human leukemic cell lines: HL-60 (human promyleocytic leukemia, p53 negative) and MOLT-4 (human T-lymphocyte leukemia, p53 wild type). Incubation with VA caused decrease in percentage of cells in S phase of cell cycle. The decrease was more intensive in HL-60 cells, where the cells in S phase were absent 6 days after the beginning of incubation with VA (4 mmol/l). 3-day-long incubation of HL-60 cells with 4 mmol/l VA caused differentiation of these cells, marked by increase in CD11b and co-stimulatory/adhesion molecule CD86, and induction of a significant apoptosis. Annexin V positive cells lost the CD11b antigen. 3-day-long incubation of MOLT-4 cells with VA (1-2 mmol/l) inhibited proliferation and decreased percentage of cells in S phase of the cell cycle. 90% of MOLT-4 cells are CD7 positive. This CD7 positivity is not changed during apoptosis induction (detected as Annexin V positivity). On the other hand, CD4 marker expression decreases after incubation with 1-2 mmol/l VA, but during apoptosis induction by 4 mmol/l VA, most of the apoptotic Annexin V positive cells were also CD4 positive. Using a clonogenic survival assay EC(50) for 3-day-long incubation with VA was determined. For HL-60 cells, the established EC(50) was 1.84 mmol/l, for MOLT-4 cells it was 1.76 mmol/l. Ability of VA to induce differentiation in HL-60 cells thus does not affect final cell killing. However, the elimination of the cells was considerably affected by presence of hematopoietic growth factors. 14-day-long incubation of HL-60 cells with VA in conditioned medium (source of IL-3, SCF, G-CSF) caused increase in EC(50) to 4 mmol/l, while in MOLT-4 cells (cultivation without conditioned medium), the EC(50) decreased to 0.63 mmol/l.  相似文献   

15.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

16.
17.
We examined the mechanism of H(2)O(2)-induced cytotoxicity and its relationship to oxidation in human leukemia cells. The HL-60 promyelocytic leukemia cell line was sensitive to H(2)O(2), and at concentrations up to about 20-25 micrometer, the killing was mediated by apoptosis. There was limited evidence of lipid peroxidation, suggesting that the effects of H(2)O(2) do not involve hydroxyl radical. When HL-60 cells were exposed to H(2)O(2) in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN), we detected a 12-line electron paramagnetic resonance spectrum assigned to the POBN/POBN(.) N-centered spin adduct previously described in peroxidase-containing cell-free systems. Generation of this radical by HL-60 cells had the same H(2)O(2) concentration dependence as initiation of apoptosis. In contrast, studies with the K562 human erythroleukemia cell line, which is often used for comparison with the HL-60, and with high passaged HL-60 cells (spent HL-60) studied under the same conditions failed to generate POBN(.). Cellular levels of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase did not explain the differences between these cell lines. Interestingly, the K562 and spent HL-60 cells, which did not generate the radical, also failed to undergo H(2)O(2)-induced apoptosis. Based on this we reasoned that the difference in H(2)O(2)-induced apoptosis might be due to the enzyme myeloperoxidase. Only the apoptosis-manifesting HL-60 cells contained appreciable immunoreactive protein or enzymatic activity of this cellular enzyme. When HL-60 cells were incubated with methimazole or 4-aminobenzoic acid hydrazide, which are inhibitors of myeloperoxidase, they no longer underwent H(2)O(2)-induced apoptosis. Hypochlorous acid stimulated apoptosis in both HL-60 and spent HL-60 cells, indicating that another oxidant generated by myeloperoxidase induces apoptosis and that it may be the direct mediator of H(2)O(2)-induced apoptosis. Taken together these observations indicate that H(2)O(2)-induced apoptosis in the HL-60 human leukemia cell is mediated by myeloperoxidase and is linked to a non-Fenton oxidative event marked by POBN(.).  相似文献   

18.
Cell cycle arrest is a major cellular response to DNA damage preceding the decision to repair or die. Many malignant cells have non-functional p53 rendering them more “aggressive” in nature. Arrest in p53-negative cells occurs at the G2M cell cycle checkpoint. Failure of DNA damaged cells to arrest at G2 results in entry into mitosis and potential death through aberrant mitosis and/or apoptosis. The pivotal kinase regulating the G2M checkpoint is Cdk1/cyclin B whose activity is controlled by phosphorylation. The p53-negative myeloid leukemia cell lines K562 and HL-60 were used to determine Cdk1 phosphorylation status during etoposide treatment. Cdk1 tyrosine 15 phosphorylation was associated with G2M arrest, but not with cell death. Cdk1 tyrosine 15 phosphorylation also led to suppression of nuclear cyclin B-associated Cdk1 kinase activity. However cell death, associated with broader tyrosine phosphorylation of Cdk1 was not attributed to tyrosine 15 alone. This broader phosphoryl isoform of Cdk1 was associated with cyclin A and not cyclin B. Alternative phosphorylations sites were predicted as tyrosines 4, 99 and 237 by computer analysis. No similar pattern was found on Cdk2. These findings suggest novel Cdk1 phosphorylation sites, which appear to be associated with p53-independent cell death following etoposide treatment.  相似文献   

19.
20.
Lithium has been an FDA-approved and preferred drug for the treatment of mood disorders for many years, and cumulative evidence has pointed towards its potential use as an anti-cancer agent. Previous studies in our laboratory have demonstrated that lithium induces apoptotic cell death in HL-60 promyelocytes at concentrations of 10?mM and above. A lithium-tolerant HL-60 sub-clone, resistant to up to 15?mM lithium, was also generated and its growth profile reported. Treatment of cells with lithium resulted in a dose-dependent induction of p53, retinoblastoma (Rb) and bax expression which was accompanied by concomitant inhibition of bcl-2 expression as demonstrated using immunohistochemical microscopy. These results seem to suggest that lithium induced cell death in these cells by inhibiting expression of anti-apoptotic protein, bcl-2, while inducing higher expression of its pro-apoptotic counterparts which include bax. Expression of bax and bcl-2 is also linked to expression of inflammation-regulating cytokines. Using ELISA assays, lithium was demonstrated to induce production of pro-inflammatory cytokines, IL-6 and TNF-??, while inhibiting release of anti-inflammation-related IL-2 and IL-10 in a dose-dependent fashion. Our findings identify a critical function for lithium in modulating pro- versus anti-apoptotic gene expression and pro- versus anti-inflammatory cytokines in vitro and provide a rationale for suggesting a promising role of lithium in regulation of inflammation and cancer growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号