首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoides monilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.  相似文献   

2.
Invasions by alien plant species may substantially alter soil seed bank communities. While decreases in seed bank species richness, diversity, and composition as a consequence of plant invasions have been reported, the characteristics of seed banks associated with different invasive species have not been compared in any detail. Here, we describe changes in the characteristics of soil seed banks invaded by three large herbaceous invasive plants, Fallopia japonica, Gunnera tinctoria, and Heracleum mantegazzianum. The study was carried out at the spatial scales of site and plot, to reduce variability in seed bank data. Information on seed bank persistence was inferred from seed depth (0–5, 5–10, and 10–15 cm) and from time of sampling (May and October). Despite differences in the reproductive strategy and geographic distribution of these invaders, as well as in the standing vegetation and habitat types examined, the seed banks of invaded areas were similar in composition and in the relative abundance of different species. Invaded seed banks were dominated by seeds of a few agricultural weed species and/or rushes, suggesting that common features of the invaders, including a large standing biomass, extensive litter production, and the formation of mono-species stands may result in comparable selection pressures that favors traits that are largely genera or species-specific. These findings have a direct relevance for the development of strategies aimed at restoring previously-invaded sites while also improving our understanding of the long-term implications of plant invasions.  相似文献   

3.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

4.
Increasing attention in invasion biology is being paid to measuring and understanding the impacts of invasive species. For plant invasions, however, the impact of invasion on soil seed bank communities has been under-studied. At six sites in southern Germany, we investigated whether areas invaded by Solidago gigantea and Solidago canadensis experienced a reduction in seed bank species richness, size and diversity, and a change in species composition compared to adjacent uninvaded areas. We found no overall effect of invasion on seed bank size, or on species richness and diversity. Seed bank size significantly decreased from 0–5 cm to 5–10 cm depth in both invaded and uninvaded areas. A significant amount of variation in species composition was explained by invasion, but it was only one-tenth of that explained solely by site effects. Our study suggests that invasion by Solidago species may not have the same impacts on the soil seed banks of native species as other invasive perennial forbs that have so far been studied.  相似文献   

5.
South African fynbos vegetation is threatened on a large scale by invasive woody plants. A major task facing nature conservation managers is to restore invaded areas. The aim of this study was to determine the restoration potential of fynbos following dense invasion by the Australian tree Acacia saligna. The impacts of dense invasion on seed‐bank composition and depth distribution were investigated to determine which fynbos guilds and species have the most persistent seed‐banks. Soil samples were excavated at three different depths for invaded and uninvaded vegetation at two sand plain and mountain fynbos sites. Seed‐banks were determined using the seedling emergence approach. Invasion caused a significant reduction in seed‐bank density and richness at all sites. There was a significant, but smaller, reduction in seed‐bank density and richness with soil depth at three sites. Seed‐bank composition and guild structure changed following invasion. Low persistence of long‐lived obligate seeders in sand plain fynbos seed‐banks indicates that this vegetation type will be difficult to restore from the seed‐bank alone following alien clearance. The dominance of short‐lived species, especially graminoids, forbs and ephemeral geophytes, suggests that regenerating vegetation will develop into a herbland rather than a shrubland. It is recommended that seed collecting and sowing form part of the restoration plan for densely invaded sand plain sites. As seed density remained higher towards the soil surface following invasion, there is no general advantage in applying a mechanical soil disturbance treatment. However, if the shallow soil seed‐bank becomes depleted, for example following a hot fire through dense alien slash, a soil disturbance treatment should be given to exhume the deeper viable seed‐bank and promote recruitment.  相似文献   

6.
Questions: Are soil seed banks affected by invasions of alien plants? How can we rigorously assess alterations in seed bank communities associated with invasive species and account for the high spatial variability of seed bank data? How do multivariate approaches compare with more traditional approaches based on analysis of variance? Location: Three riparian sites, Ireland. Methods: A protocol based on a combination of multivariate techniques was used to characterize soil seed bank communities associated with the herbaceous invasive species Heracleum mantegazzianum in May and October. Permutational multivariate analysis of variance (PERMANOVA) was used to test the effects of the factors “invasion”, “site”, “plot” and “depth” on the soil seed bank, while multivariate analysis of dispersion (PERMDISP) provided a measure of the variability of seed bank data at different spatial scales. Similarity percentages analysis (SIMPER) was used to identify the species that contributed most to the differences between invaded and uninvaded communities. A comparison between the results of PERMANOVA and ANOVA analyses was also made. Results: The composition of seed bank communities invaded by H. mantegazzianum differed significantly from that of uninvaded seed banks. Invaded seed banks were less diverse and had reduced abundance, and were dominated by only a few species, such as Urtica dioica and Juncus effusus. Such patterns were recorded at each of three depth categories, indicating that invasive plants can affect both the transient and the more persistent component of the soil seed bank. Seed bank variability was significantly higher within uninvaded areas, supporting the notion that invasions tend to lead to more homogeneous communities. Conclusion: The analytical protocol used in this study was effective in quantifying the effect of plant invasions, at different spatial scales, providing a statistically robust analysis of alterations in soil seed bank communities. Compared to ANOVA, this protocol provided more biological information and was more appropriate for analysis of the data. This approach is therefore recommended in soil seed bank and invasion ecological studies.  相似文献   

7.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

8.
We investigated the effects of exotic species invasion and 3?years of nitrogen (N) fertilization on the soil seed bank in Joshua Tree National Park, California, USA at four sites along an N deposition gradient. We compared seed bank composition and density in control (no N added) and fertilized (30?kg?N?ha?1?year?1) plots to determine if the seed bank would reflect aboveground changes due to N fertilization. Soil samples were collected and germinated in a greenhouse over 2?years. In the field, invasive species cover responded positively to N fertilization. However, we did not observe increased seed density of exotic invasive species in fertilized plots. While no significant differences were detected between treatments within sites, exotic invasive grass seeds overwhelmed the seed bank at all sites. Significant differences between sites were found, which may be due to differences in level of invasion, historic N deposition, and soil surface roughness. Sites experiencing low N deposition had the highest seed bank species richness for both control and fertilized treatments. Aboveground plant density did not correlate well with seed bank density, possibly due to the inherent patchiness of soil seed banks and differential ability of species to form seed banks. This seed bank study provided insight into site-specific impacts on native versus invasive species composition of soil seed banks, as well as magnitude of invasion and restoration potential at invaded sites.  相似文献   

9.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

10.
Aims In recent years, there has been an increasing interest in the impact of invasive alien plant species on the soil seed bank. Soil seed banks play an important role in determining the composition and dynamics of the vegetation through time. Therefore, an ability to form a persistent seed bank and/or a capacity to alter the structure of the seed bank of invaded communities could be important factors in determining the success of many alien plant species. In this study, we report on a detailed assessment of the characteristics of the seed bank community associated with the herbaceous plant invader, Gunnera tinctoria, a newly emerging and potentially globally significant invasive plant species. This species, native to South America, is invasive in a range of wet habitats in Europe, Australasia and the USA.Methods A comprehensive assessment of the seed bank of invaded and comparable uninvaded areas was made at two points in time (May and October), at three sites in western Ireland. The seedling emergence approach was used to assess the structure (diversity, dominance and abundance) of the soil seed bank. Differences between invaded and uninvaded seed bank communities were investigated at the spatial scales of site, plot and depth.Important findings Gunnera tinctoria formed a large persistent seed bank at the study sites. Approximately 30-000 seedlings per square metre emerged from soils collected from invaded areas, of which 30% were found in deep soil layers. Seedlings of this invader represented 53–86% of the total number of seedlings associated with invaded areas. Both the transient and the more persistent component of the seed bank of invaded communities were significantly less diverse and abundant than those of uninvaded areas, and were characterized by higher dominance, even when seedlings of the invader were not included in the analysis. The seed bank of invaded areas was largely composed of seeds of agricultural weeds in addition to those of the invader. These results suggest that G. tinctoria has the capacity to profoundly alter the seed bank of invaded communities. These results have direct relevance for the development of control and management strategies, for this and other comparable invasive species, which should account for both quantitative and qualitative alterations in the seed bank community. Our study also suggests that control measures that result in disturbance of areas colonized by G. tinctoria could promote the germination of undesirable weeds.  相似文献   

11.
Abstract. Hawaiian ecosystems are prone to invasion by alien plant species. I compared the seed rain, seed bank, and vegetation of a native Hawaiian forest to examine the potential role that seed ecology plays in allowing alien species to invade native forest. Absolute cover of seed plants in the forest was 126 %, annual seed rain was 5 713 seeds m-2 yr-1, and the mean density of seedlings emerging from the seed bank averaged across four seasons was 1 020/m2. The endemic tree Metrosideros polymorpha was the most abundant species in the vegetation, seed rain and winter seed bank. Overall, native seed plants comprised 95 % of the relative cover in the vegetation and 99 % of the seeds in the seed rain, but alien species comprised 67 % of the seeds in the seed bank. Alien species tended to form persistent seed banks while native species formed transient or pseudo-persistent seed banks. Dominance of the seed bank by alien species with persistent seed banks suggests that aliens are favorably placed to increase in abundance in the vegetation if the forest is disturbed.  相似文献   

12.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

13.
Plant invasions are known to have negative impacts on native plant communities, yet their influence on higher trophic levels has not been well documented. Past studies investigating the effects of invasive plants on herbivores and carnivores have been largely observational in nature and thus lack the ability to tease apart whether differences are a cause or consequence of the invasion. In addition, understanding how plant traits and plant species compositions change in invaded habitats may increase our ability to predict when and where invasive plants will have effects that cascade to animals. To assess effects on arthropods, we experimentally introduced a non‐native plant (Microstegium vimineum, Japanese stiltgrass) in a community re‐assembly experiment. We also investigated possible mechanisms through which the invader could affect associated arthropods, including changes in native plant species richness, above‐ground plant biomass, light availability and vegetation height. In experimentally invaded plots, arthropod abundance was reduced by 39%, and species richness declined by 19%. Carnivores experienced greater reductions in abundance than herbivores (61% vs 31% reduction). Arthropod composition significantly diverged between experimentally invaded and control plots, and particular species belonging to the abundant families Aphididae (aphids), Formicidae (ants) and Phalacridae (shining flower beetles) contributed the most to compositional differences. Among the mechanisms we investigated, only the reduction in native plant species richness caused by invasion was strongly correlated with total arthropod abundance and richness. In sum, our results demonstrate negative impacts of M. vimineum invasion on higher trophic levels and suggest that these effects occur, in part, indirectly through invader‐mediated reductions in the richness of the native plant community. The particularly strong response of carnivores suggests that plant invasion could reduce top–down control of herbivorous species for native plants.  相似文献   

14.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

15.
16.
The invasion by alien macrophytes in aquatic ecosystems may produce a strong alteration of the native aquatic vegetation leading to heavy impacts for both plant and faunal native diversity. Myriophyllum aquaticum is an aquatic plant native of Southern America, invasive in several part of the world. We studied the effects of M. aquaticum invasion on plant and macro-arthropod communities in the canals around a protected wetland in the Mediterranean basin. We sampled plant and macro-arthropod communities in 10 transects in invaded and non-invaded tracts of the canals. We assessed the differences in plant and macro-arthropod species richness, diversity, taxonomic diversity and species composition between invaded and non-invaded habitats by means of univariate and multivariate analyses. Our study shows a significant loss of plant diversity between non-invaded to invaded sites, leading to communities numerically and taxonomically impoverished and highly divergent in the species composition. We also detected significant differences in arthropod species composition between invaded and non-invaded transects. Some taxa such as mosquitoes and malacostraca were more frequent in the M. aquaticum-dominated stands. Furthermore, the study shows a positive relation between invaded habitats and juvenile individuals of the invasive alien crayfish Procambarus clarkii.  相似文献   

17.
Question: How resilient is the seed bank of an invaded dune system? Is that resilience dependent on duration of invasion? How does the accumulated litter layer contribute to the soil seed bank? Location: Coastal sand dunes invaded by Acacia longifolia, Portugal. Methods: Seedling emergence was used to quantify and compare soil seed banks in long‐invaded, recently invaded and non‐invaded areas. Changes in seed banks were also compared with areas where A. longifolia and the litter layer were removed. Results: Species richness, seedling density and diversity were higher in non‐invaded and recently‐invaded areas than in long‐invaded areas. Although there was an apparent similarity between non‐invaded and recently‐invaded areas, analyses of species traits revealed differences. Non‐invaded areas had a wider array of traits. Exotic/invasive species dominated invaded seed banks while native species dominated non‐invaded seed banks. Life forms, growth forms, longevity and dispersal mode showed differences between areas, with cleared plots of long‐invaded areas being apparently the most similar to non‐invaded plots. Acacia longifolia seeds were most abundant in long‐invaded areas, particularly where the litter layer remained. Removal of A. longifolia plus the litter had little effect on the seed bank composition of recently‐invaded areas but resulted in noticeable changes in seed banks of long‐invaded areas. Conclusions: Long‐invaded areas are less resilient and show a higher reinvasion potential, despite severe alteration of the seed banks of both areas. Seed bank studies can be a useful tool to guide management, but can give misleading results when invasion periods are protracted.  相似文献   

18.
Soil seed banks can play an important role in the restoration of degraded ecosystems, especially where indigenous species are well represented in, and invasive species are largely absent from, the seed bank. Here, we studied the potential contribution of the soil seed bank to the restoration of invaded, abandoned agricultural fields in the Eastern Cape, South Africa. We recorded the aboveground cover and belowground abundance of all vascular plant species from 120 quadrats that differ in cover of the extralimital woody invader, Pteronia incana. Our results show that higher cover of P. incana is associated with lower species richness, aboveground cover, and belowground seed abundance. Furthermore, community similarity between the above‐ and belowground component was low, with the seed bank and standing vegetation having only 15 species in common and 49 species being recorded only from the seed bank. We suggest that this large number of seed bank‐only species is a relic of previous vegetation, prior to large‐scale invasion by P. incana. The most important finding from our study is the absence of P. incana from the soil seed bank. This finding, combined with the large number of mostly native species from the seed bank, holds promise from a restoration perspective. However, given the susceptibility of the invaded systems to erosion, coupled with the low grazing value of the seed bank species, we suggest that P. incana removal should be accompanied by both erosion control measures and reseeding with palatable grass species, to secure the livelihoods of local communities.  相似文献   

19.
Abstract Invasive woody species frequently change the composition of the established vegetation and the properties of the soil under their canopies. Accordingly, invasion may well affect regenerative phases of the community, especially at the seed bank level, likely influencing community restoration. Pyracantha angustifolia (Rosaceae) is an invasive shrub in central Argentina that affects woody recruitment, particularly enhancing the recruitment of other exotic woody species. There is though no information regarding its effect on the soil seed bank within the invaded community. The present study was set up to gain further insight into the canopy effects of P. angustifolia. We aimed to assess whether the invasive shrub affects seed bank composition, richness and seed density as compared with the dominant native shrub Condalia montana (Rhamnaceae), and to relate the observed seed bank patterns with those of the established vegetation. We evaluated the composition of the germinable seed bank and the established vegetation under the canopy of 16 shrubs of P. angustifolia, 16 shrubs of C. montana, and in 16 control plots (10 m2) without shrub cover. The floristic composition of the seed bank differed among canopy treatments. However, seed bank richness did not differ significantly. There was an overall high seed density of exotic species throughout the study site, though exotic forbs showed significantly lower seed densities under the invasive shrub. Pyracantha angustifolia would not promote the incorporation of new species into the seed bank of the invaded community but rather favour the establishment of woody species that do not depend on seed banks. The absence of dominant woody species in the seed bank, the dominance of exotic forbs, and the high similarity between established exotic species and those present in the seed bank may surely affect community restoration following the main disturbances events observed in the region.  相似文献   

20.
Restoration is gaining importance in the management of plant invasions. As the success of restoration projects is frequently determined by factors other than ecological ones, we explored the ecological and financial feasibility of active restoration on three different invaded sites in South Africa's Cape Floristic Region. The aim of our study was to identify cost-effective ways of restoring functional native ecosystems following invasion by alien plants. Over three years we evaluated different restoration approaches using field trials and experimental manipulations (i.e. mechanical clearing, burning, different soil restoration techniques and sowing of native species) to reduce elevated soil nutrient levels and to re-establish native fynbos communities. Furthermore we investigated the possibility of introducing native fynbos species that can be used for sustainable harvesting to create an incentive for restoration on private land.Diversity and evenness of native plant species increased significantly after restoration at all three sites, whereas cover of alien plants decreased significantly, confirming that active restoration was successful. However, sowing of native fynbos species had no significant effect on native cover, species richness, diversity or evenness in the Acacia thicket and Kikuyu field, implying that the ecosystem was sufficiently resilient to allow autogenic recovery following clearing and burning of the invasive species. Soil restoration treatments resulted in an increase of available nitrogen in the Acacia thicket, but had no significant effects in the Eucalyptus plantation. However, despite elevated available soil nitrogen levels, native species germinated irrespective whether sown or unsown (i.e. regeneration from the soil seed bank).Without active introduction of native species, native grasses, forbs and other shrubs would have dominated, and proteoids and ericoids (the major fynbos growth forms) would have been under-represented.The financial analysis shows that income from flower harvesting following active restoration consistently outweighs income following passive restoration, but that the associated increase in income does not always justify the higher costs. We conclude that active restoration can be effective and financially feasible when compared to passive restoration, depending on the density of invasion. Active restoration of densely invaded sites may therefore only be justifiable if the target area is in a region of high conservation priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号