首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Germination of barley seeds was inhibited by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) at concentrations greater than 0.03mmol/L, and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) and benzoxazolin-2(3H)-one (BOA) at concentrations greater than 0.1mmol/L. These benzoxazinoids also inhibited the induction of alpha-amylase activity in the barley seeds, and inhibited gibberellin-induced alpha-amylase activity in de-embryonated barley seeds. Significant inhibition in the germination and alpha-amylase induction were observed as concentrations of DIMBOA, DIBOA, MBOA and BOA increased. These results suggest that DIMBOA, DIBOA, MBOA and BOA may inhibit the germination of barley seeds by inhibiting the gibberellin-induced process, leading to alpha-amylase production. The inhibitory activities of germination and alpha-amylase induction of DIMBOA and DIBOA were greater than those of their degraded substances MBOA and BOA, respectively, and the inhibitory activities of DIMBOA and MBOA were greater than those of their demethoxylated analogues DIBOA and BOA, respectively.  相似文献   

2.
Bailey BA  Larson RL 《Plant physiology》1989,90(3):1071-1076
Hydroxamic acids occur in several forms in maize (Zea mays L.) with 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) being the predominant form and others including 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) being found at lower concentrations. Two enzymes capable of glucosylating hydroxamic acids were identified in maize protein extracts and partially purified and characterized. The total enzyme activity per seedling increased during the first 4 days of germination and was concurrent with the accumulation of DIMBOA. Purification of the enzymes by ammonium sulfate precipitation followed by Sephadex G-200 and Q-Sepharose gel chromatography resulted in a 13-fold increase in specific activity. The enzymes are initially separated into two peaks (peak 1 and peak 2) of activity by Q-Sepharose gel chromatography. The peak 1 glucosyltransferase had 3.6% of the DIMBOA glucosylating activity when DIBOA was used as substrate, whereas this percentage increased to 57% for the peak 2 enzyme. The enzyme in peak 2 has a Km of 174 micromolar for DIMBOA and a Km of 638 micromolar for DIBOA; the enzyme in peak 1 has a Km of 217 micromolar for DIMBOA and its activity on DIBOA was too low to determine a Km. The identification of two glucosyltransferases capable of glucosylating hydroxamic acids in vitro serves as an initial step in the characterization of the enzymes involved in production of hydroxamic acids in maize.  相似文献   

3.
Cyclic hydroxamic acids, 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy analogue (DIMBOA), occur transiently in high amounts in wheat and maize during the juvenile, non-autotrophic stage of growth. To elucidate the biosynthetic enzymes operating for the transient production of these compounds, we examined the hydroxylating activities for 2-hydroxy-1,4-benzoxazin-3-one (HBOA), the immediate precursor of DIBOA, and indole, the first intermediate of the biosynthetic pathway that branches off from the tryptophan pathway, by using microsomes prepared from wheat seedlings. Both hydroxylases occurred soon after germination, reached a maximum 48 h after germination, and decreased to finally disappear as the plants grew into the autotrophic growth stage. The mode of appearance and disappearance similar to that of hydroxamic acids, suggesting that elevated expression of the whole set of enzymes involved in the biosynthesis after indole was responsible for the transient occurrence of hydroxamic acids. The hydroxylating activity was also observed for 1,4-benzoxazin-3-one, a putative precursor of HBOA, but to significantly less extent than that for HBOA and indole.  相似文献   

4.
Hydroxamic acid content was analyzed in the root tissue of four maize, Zea mays L., lines using high-performance liquid chromatography (HPLC) and related to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval development and survivorship. Maize lines evaluated included Mp710 (PI 596627), MpSWCB-4, (PI 550498), Sc213 (PI 548792), and Dk580 (DeKalb commercial hybrid). Maize plants from each line were grown in test tubes containing a transparent agarose gel medium in a growth chamber. After 8 d of growth, root tissue of each line was harvested and hydroxamic acid content analyzed using HPLC. Three hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolinone (MBOA), and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), were identified in the maize roots tested. DIMBOA concentration was quantified and ranged from 246.37 +/- 70.53 micrograms to 91.84 +/- 49.82 micrograms DIMBOA per gram of root tissue. No significant difference was found among lines in D. v. virgifera larval development and survivorship.  相似文献   

5.
Hydroxamates (HX) are major secondary metabolites synthesized by rye and are responsible for some of the unique properties of this cereal, including good tolerance of biotic and abiotic stresses and allelopathy. Recently, five genes encoding enzymes taking part in HX biosynthesis have been sequenced and characterized, which was the starting point to undertake the present study. Association analysis of the content of six HX–HBOA (2-hydroxy-1,4-benzoxazin-3-one), GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one glucoside), DIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one), GDIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one glucoside), DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) in the above-ground parts of plants and roots was performed on a population consisting of 102 and 121 diverse inbred lines, in 2013 and 2014, respectively. Altogether, 48 single nucleotide polymorphisms (SNPs) were found to be associated with the content of at least one HX: 20 SNPs were associated with HX synthesized in the above-ground parts of rye plants (AG-SNP), and 28 were associated with HX synthesized in the roots (R-SNP). The highest number of SNPs was present in genes ScBx1 (9) and ScBx5 (11). The majority of SNPs were affected by environmental factors, except for two: ScBx4_1702 associated with GDIBOA and MBOA contents, and ScBx5_1105 associated with HBOA content in roots.  相似文献   

6.
Cyclic hydroxamic acid glucosides are present at high concentrations immediately after germination in wheat (Triticum aestivum L.). Changes in the activity of UDP-Glucose:cyclic hydroxamic acid glucosyltransferase (EC 2.4.1.-) in wheat were investigated using the cyclic hydroxamic acids 2.4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy derivative (DIMBOA) as sugar acceptors. Glucosyltransferase activity on both substrates was detected in dry seeds, with activity increasing after imbibition, peaking in shoots and roots 36-48 hours after imbibition and decreasing thereafter. The transience of glucosyltransferase activity was concurrent with the transient occurrence of the hydroxamic acid glucosides [Nakagawa E., Amano T., Hirai N., and Iwamura H. (1995) Phytochemistry 38, 1349-1354], suggesting that glucosyltransferases regulate the accumulation of hydroxamic acid glucosides in wheat seedlings. Two peaks in activity of UDP-Glucose:DIMBOA glucosyltransferase were detected using a Mono Q column, indicating the presence of at least two isozymes of this glucosyltransferase. The enzyme in the major peak was purified about 1500-fold and shown to be in a monomeric form with a molecular mass of 47 or 49 kDa. The enzyme reacted strongly with DIMBOA, less so with DIBOA. The enzyme of the minor peak on the Mono Q chromatogram, which was also a monomeric enzyme with a molecular mass of 47 kDa, showed similar substrate specificity to that of the major peak enzyme.  相似文献   

7.
We report the variation of all 1,4-benzoxazin-3-one derivatives content detectable in maize with plant age in roots and aerial parts. Our results show that the concentration of hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) and its 8-methoxylated analogue (DIM2BOA-Glc) is high after seed germination and then decreases with plant age. Nevertheless, these compounds continue to be biosynthesised during 6-10 days after germination. Variation in concentration of N-O-methylated DIMBOA-Glc (HDMBOA-Glc) is similar to the one of hydroxamic acids in aerial parts. On the contrary, in roots, its concentration remains relatively stable with plant age. After 10 days, HDMBOA-Glc becomes the main compound in roots. This compound is also present in higher concentration than hydroxamic acids in the oldest leaf of 20-day-old maize. The presence of four other DIMBOA related compounds in maize plants depends on variety, age and tissue. The role of these compounds in plant resistance to aphids is discussed.  相似文献   

8.
Contents of three 1,4-benzoxazin-3-ones in tissue samples from different parts (young leaf, second leaf, old leaf, stem and root) of young maize plants of 4-leaves stage, fed by the third instar larvae of the Asian corn borer, Ostrinia furnacalis (Guenée), were analyzed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). Samples were taken immediately (set A) or 48 h (set B) after larvae had fed on the second leaf for 48 h. The three 1,4-benzoxazin-3-ones investigated in our experiments were 2,4-dihydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (DIMBOA), 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and 2-hydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (HMBOA). In samples of set A, the levels of DIMBOA and HMBOA were significantly lifted in the old leaf (L3) and young leaf (L1), respectively, while amounts of these two chemicals in other plant parts were not significantly different between larvae-fed plants and intact plants. Concentrations of DIBOA in each plant part remained unchanged. In samples of set B, no concentration differences for any of these three 1,4-benzoxazin-3-ones between larvae-fed plants and controls were observed in any plant part. The feeding of the Asian corn borer seems to have limited effects on induction of these three 1,4-benzoxazin-3-ones in young maize plants of the variety investigated.  相似文献   

9.
The resistance mechanism of vetiver (Chrysopogon zizanioides) to atrazine was investigated to evaluate its potential for phytoremediation of environment contaminated with the herbicide. Plants known to metabolise atrazine rely on hydroxylation mediated by benzoxazinones, conjugation catalyzed by glutathione-S-transferases and dealkylation probably mediated by cytochromes P450. All three possibilities were explored in mature vetiver grown in hydroponics during this research project. Here we report on the chemical role of benzoxazinones in the transformation of atrazine. Fresh vetiver roots and leaves were cut to extract and study their content in benzoxazinones known to hydroxylate atrazine, such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and their mono- and di-glucosylated forms. Identification of benzoxazinones was performed by thin layer chromatography (TLC) and comparison of retention factors (Rf) and UV spectra with standards: although some products exhibited the same Rf as standards, UV spectra were different. Furthermore, in vitro hydroxylation of atrazine could not be detected in the presence of vetiver extracts. Finally, vetiver organs exposed to [14C]-atrazine did not produce any significant amount of hydroxylated products, such as hydroxyatrazine (HATR), hydroxy-deethylatrazine (HDEA), and hydroxy-deisopropylatrazine (HDIA). Altogether, these metabolic features suggest that hydroxylation was not a major metabolic pathway of atrazine in vetiver.  相似文献   

10.
A gas-liquid chromatographic (GLC) procedure is reported for the quantitation of the trimethylsilyl (TMS) derivatives of substituted 2-hydroxy-2H-1,4-benzoxazin-3(4H)-ones (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one[HBOA]; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[HMBOA];2,4- dihydroxy-2H-1,4-benzoxazin-3(4H)-one[DIBOA]; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[DIMBOA]; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one[DIM 2BOA]) found in maize (Zea mays L.) extracts. Derivatized samples were chromatographed on columns with liquid phases of 2% DC-11 and 3% OV-17 and detected by flame ionization. Internal standards were methyl palmitate and methyl stearate on DC-11 and methyl behenate on OV-17. Detector response was linear to at least 5 nanomoles for TMS2-HBOA and TMS2-DIBOA and to 19 nanomoles for TMS2-DIMBOA. Standard errors of 2% or less were obtained when four replicate samples were analyzed. For each of the 15 maize lines examined, the amount of DIMBOA determined by GLC was directly proportional to the amount of ferric chloride-reactive material determined colorimetrically.  相似文献   

11.
Induction of the accumulation of 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-beta-D-glucopyranose (HDMBOA-Glc) by jasmonic acid (JA) was investigated in wheat, Job's tears (Coix lacryma-jobi), and rye. An increase in HDMBOA-Glc and a corresponding decrease in 2-(2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-beta-D-glucopyranose (DIMBOA-Glc) were found in wheat and Job's tears, whereas no such changes were observed in rye. The activity of S-adenosyl-L-methionine:DIMBOA-Glc 4-O-methyltransferase which catalyzes the conversion of DIMBOA-Glc to HDMBOA-Glc was detected in wheat leaves treated with 50 micro M JA. The activity started to increase 3 h after treatment with JA, reached a maximum after 9 h, and then decreased gradually. This mode of induction was well correlated with that for the accumulation of HDMBOA-Glc, indicating the induction of enzyme activity was responsible for the accumulation of HDMBOA-Glc. The enzyme was purified from JA-treated wheat leaves by three steps of chromatography, resulting in 95-fold purification. The enzyme showed strict substrate specificity for DIMBOA-Glc with a K(m) value of 0.12 mM. DIBOA-Glc was also accepted as substrate, but the K(m) value was 10 times larger than that for DIMBOA-Glc. The aglycones, DIMBOA and DIBOA, were not methylated by the enzyme. The K(m) value for S-adenosyl-L-methionine was 0.06 mM. The optimum pH and temperature were 7.5 and 35 degrees C, respectively. The activity was slightly enhanced by the presence of 1 mM EDTA, while heavy metal ions at 5 mM completely inhibited the activity.  相似文献   

12.
An insect inhibitor isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), reacted with cysteine, mercaptoethanol, ethane  相似文献   

13.
The cyclic hydroxamic acids, 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), are defensive secondary metabolites found in gramineous plants including wheat, maize and rye. cDNAs for five cytochromes P450 (P450s) involved in DIBOA biosynthesis (CYP71C6, CYP71C7v2, CYP71C8v2, CYP71C9v1 and CYP71C9v2) were isolated from seedlings of hexaploid wheat [( Triticum aestivum L. cv. Chinese Spring (2n=6x=42, genomes AABBDD)] by RT-PCR and screening of a cDNA library. CYP71C9v1 and CYP71C9v2 are 97% identical to each other in amino acid and nucleotide sequences. The cloned P450 species showed 76-79% identity at the amino acid level to the corresponding maize P450 species CYP71C1-C4, which are also required for DIBOA biosynthesis. The wheat P450 cDNAs were heterologously expressed in the yeast ( Saccharomyces cerevisiae) strain AH22. Microsome fractions from yeast cells expressing these P450 species catalyzed the same reactions as their maize orthologs. The chromosomes carrying the cyp71C6- C9v1 orthologs were identified by Southern hybridization using aneuploid lines of Chinese Spring wheat. The cyp71C9v1 orthologs were located on the chromosomes of wheat homoeologous group-4. The orthologs of the other P450 genes, cyp71C7v2, cyp71C6 and cyp71C8v2, were located on group-5 chromosomes. The same P450 genes were also present in the three ancestral diploid species of hexaploid wheat, T. monococcum (AA), Aegilops speltoides [BB (approximately SS)] and Ae. squarrosa (DD).  相似文献   

14.
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid (Hx) occurring in wheat, was shown to deter feeding by the aphid Rhopalosiphum padi (L.), and to reduce BYDV transmission to the plant. Dual choice tests with wheat leaves showed the preferential settlement of aphids on leaves with lower levels of DIMBOA. Electric monitoring of aphid feeding behaviour showed that in seedlings with higher DIMBOA levels fewer aphids reached the phloem and they needed longer times to contact a phloem vessel than in those with lower levels. When aphids carrying BYDV were allowed to feed on wheat cultivars with different DIMBOA levels, fewer plants were infected with BYDV in the higher DIMBOA cultivars than in the lower ones. Preliminary field experiments showed a tendency for wheat cultivars with higher Hx levels to be more tolerant to infection by BYDV than lower Hx level ones.  相似文献   

15.
Benzoxazinoids were identified in the early 1960s as secondary metabolites of the grasses that function as natural pesticides and exhibit allelopathic properties. Benzoxazinoids are synthesized in seedlings and stored as glucosides (glcs); the main aglucone moieties are 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA). The genes of DIBOA-glc biosynthesis have previously been isolated and the enzymatic functions characterized. Here, the enzymes for conversion of DIBOA-glc to DIMBOA-glc are identified. DIBOA-glc is the substrate of the dioxygenase BENZOXAZINLESS6 (BX6) and the produced 2,4,7-trihydroxy-2H-1,4-benzoxazin-3-(4H)-one-glc is metabolized by the methyltransferase BX7 to yield DIMBOA-glc. Both enzymes exhibit moderate K(m) values (below 0.4 mm) and k(cat) values of 2.10 s(-1) and 0.25 s(-1), respectively. Although BX6 uses a glucosylated substrate, our localization studies indicate a cytoplasmic localization of the dioxygenase. Bx6 and Bx7 are highest expressed in seedling tissue, a feature shared with the other Bx genes. At present, Bx6 and Bx7 have no close relatives among the members of their respective gene families. Bx6 and Bx7 map to the cluster of Bx genes on the short arm of chromosome 4.  相似文献   

16.
Gas-liquid chromatography-mass spectrometry (GLC-MS) has been used for the separation, detection, and identification of 1,4-benzoxazin-3-ones (hydroxamic acids and lactams) and benzoxazolinones found in maize (Zea mays L.) extracts. Compounds of interest were partitioned into ethyl acetate from aqueous maize seedling extracts. For analysis by GLC-MS, trimethylsilyl derivatives were prepared, chromatographed on a column of 3% OV-1, and detected in the mass spectrometer. Mass spectra were obtained for all peaks present in extracts of four maize lines. A data comparison system was developed for relating unidentified spectra to the spectra of the reference compounds. Based on spectral comparisons, three hydroxamic acids (2,4-dihydroxy-2H-1, 4-benzoxazin-3(4H)-one; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one), three lactams (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one; 2,7-dihydroxy-2H-1,4-benzoxazin-3(4H)-one; and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), one benzoxazolinone (6-methoxybenzoxazolinone), and two organic acids (malic and aconitic) were identified in the extracts. In addition, one other hydroxamic acid and one other related compound were tentatively identified based on mass spectral evidence.  相似文献   

17.
Two hydroxamic acids isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-(2H)-benzoxazin-3(4H)-one (DIMBOA) and the 2-O-beta-d-glucopyranoside of DIMBOA, inhibit photophosphorylation by spinach chloroplasts. Both cyclic and noncyclic photophosphorylations were inhibited to the same extent. The concentrations producing 50% inhibition for DIMBOA and its glucoside were about 1 and 4 millimolar, respectively. These compounds inhibit coupled electron transport but do not affect basal or uncoupled electron transport. Both acids inhibit the ATPase activities of membrane-bound coupling factor 1 (CF(1)) and of purified CF(1). On the basis of these results, it is concluded that DIMBOA and its glucoside act as energy transfer inhibitors of photophosphorylation.  相似文献   

18.
An improved method of sample preparation and simultaneous HPLC separation was developed that allowed the separation of 2,4-dihydroxy-1,4-benzoxazine-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3(4H)-one (DIMBOA), 2-hydroxy-1,4-benzoxazine-3(2H)-one (HBOA), 2-hydroxy-7-methoxy-1,4-benzoxazine-3(2H)-one (HMBOA) and their corresponding glucosides as well as the benzoxazolinones BOA and MBOA. The amount and distribution of these compounds was determined in the roots of Aphelandra squarrosa and A. fuscopunctata plants. There is a significant difference in the amount and distribution of this substance class in the two species analyzed. The results are discussed in relation to their function as defence compounds and allelochemicals.  相似文献   

19.
转Bt基因玉米叶片次生代谢物DIMBOA和酚酸类物质含量的变化   总被引:10,自引:0,他引:10  
异羟肟酸和酚酸类物质是玉米植株中重要的次生代谢物,可以帮助抵御多种病原菌、害虫、线虫和其它植物的危害。采用HPL C法研究了Bt玉米34B2 4、G30、农大6 1(Nongda6 1)和14 2 6×14 82以及部分相应的非转基因玉米叶片DIMBOA和酚酸类物质含量的变化。试验结果表明,不同玉米品种之间DIMBOA含量的差异很大;各Bt玉米品种叶片的DIMBOA含量普遍低于相对应的非转基因近等基因系。从不同部位的叶片看,玉米幼嫩叶片中的DIMBOA含量普遍较高;不同品种叶片DIMBOA含量的差异主要表现在幼叶之间,而老叶间的差异普遍较小。无论是Bt玉米还是非转基因玉米,随着生长时间的增加,各品种玉米幼苗全株叶片的DIMBOA含量急剧减少;各品种倒1叶的DIMBOA含量也都随着生长期的增加而减少,倒3叶却没有这样的规律。Bt玉米叶片的DIMBOA含量在单一的干旱胁迫或缺氮胁迫下的变化规律与非转基因玉米相似,即单一的干旱胁迫或缺氮胁迫下玉米各部位叶片的DIMBOA含量均显著升高;然而,在干旱和缺氮双重胁迫下,Bt玉米14 2 6×14 82在生长的中后期各部位叶片的DIMBOA含量却低于正常生长条件,明显不同于非转基因玉米的变化规律。与相应的非转基因近等基因系相比,虽然Bt玉米中香草酸和丁香酸的含量没有显著减少,但阿魏酸的含量显著降低。这一结果表  相似文献   

20.
The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号